

Science "Special" Seminar

New Ruthenium(II) Thiolate Complexes: Cooperative Activation of E–H Bonds (E = H, Si, B) and Catalytic Applications

Martin Oestreich

Institut für Chemie, Technische Universität Berlin

Introduction

Ruthenium(II) thiolate complexes of type [(DmpS) RuCl(PR₃)] (**1a**: R = *i*-Pr; **1b**: R = *p*-FC₆H₄), introduced by Ohki, Tatsumi, and Oestreich, serve as air-stable precursors for cationic ruthenium(II) thiolate complexes **2** (Scheme 1, top). These (formally) 16-valence-electron complexes are highly active bifunctional catalysts for the cooperative activation of H–H,^[1,2] Si–H^[3–12] as well as B–H^[13] bonds. For catalytic applications, the air-sensitive catalysts **2** can either be preformed or generated in situ by treatment of the corresponding ruthenium(II) chloride complex **1** with NaBArF₄ (ArF = 3,5-bis(trifluoromethyl)phenyl). The tethered coordination mode of the bulky 2,6-dimesitylphenyl thiolate (DmpS) ligand is crucial, stabilizing the coordinatively unsaturated ruthenium atom in **2** and also preventing formation of binuclear sulfurbridged complexes. The polar Ru–S bond of these complexes combines Lewis acidity at the metal center and Lewis basicity at the adjacent sulfur atom. This structural motif allows for reversible heterolytic splitting of E–H bonds (E = H, Si, and B) across the polar Ru–S bond, generating a metal hydride and a sulfur-stabilized E⁺ cation (Scheme 1, bottom).^[3] After transfer of the electrophile to a Lewis-basic substrate, the resulting neutral ruthenium(II) hydride can either act as a hydride donor (reductant) or as a proton acceptor (Brønsted base), thereby releasing dihydrogen. On the basis of this approach, complexes **2** emerged as broadly applicable catalysts for chemoselective reductions (hydrogenation and transfer hydrogenation,^[1,2] as well as hydrosilylation^[10,11]), dehydrogenative couplings (Si–C(sp²),^[4–6] Si–O,^[7] Si–N,^[8,9] and B–C(sp²)^[13]), as well as hydrodefluorination reactions.^[12]

Scope

1 - Hydrogenation and transfer hydrogenation of imines:^[2]

2 - Regioselective electrophilic C–H silylation of indoles:^[4]

3 – Regioselective electrophilic C–H silylation of pyridines:^[5]

4 - Preparation of dibenzosiloles by intramolecular electrophilic C-H silylation:^[6]

5 - Direct formation of silyl enol ethers^[7] and N-silylated enamines^[8] by dehydrogenative coupling of enolizable ketones and ketimines with hydrosilanes:

6 - Dehydrogenative silvlation of the N-H bond of indoles, pyrroles, carbazoles, and anilines:[9]

7 - Regioselective hydrosilylation of pyridines and benzannulated congeners:^[10]

8 - Chemoselective hydrosilylation of carbon dioxide:[11]

9 - Hydrodefluorination of CF₃-substitued anilines:^[12]

10 - Regioselective electrophilic C-H borylation of nitrogen-containing heterocycles:^[13]

References

- Y. Ohki, Y. Takikawa, H. Sadohara, C. Kesenheimer, B. Engendahl, E. Kapatina, K. Tatsumi, *Chem. Asian J.* 2008, 3, 1625.
- [2] A. Lefranc, Z.-W. Qu, S. Grimme, M. Oestreich, *Chem. Eur. J.* 2016, 22, 10009.
- [3] T. Stahl, P. Hrobárik, C. D. F. Königs, Y. Ohki, K. Tatsumi, S. Kemper, M. Kaupp, H. F. T. Klare, M. Oestreich, *Chem. Sci.* 2015, 6, 4324.
- [4] H. F. T. Klare, M. Oestreich, J.-i. Ito, H. Nishiyama, Y. Ohki, K. Tatsumi, J. Am. Chem. Soc. 2011, 133, 3312.
- [5] S. Wübbolt, M. Oestreich, Angew. Chem. Int. Ed. 2015, 54, 15876.
- [6] L. Omann, M. Oestreich, Angew. Chem. Int. Ed. 2015, 54, 10276.

- [7] C. D. F. Königs, H. F. T. Klare, Y. Ohki, K. Tatsumi, M. Oestreich, Org. Lett. 2012, 14, 2842.
- [8] J. Hermeke, H. F. T. Klare, M. Oestreich, *Chem. Eur. J.* 2014, 20, 9250.
- [9] C. D. F. Königs, M. F. Müller, N. Aiguabella, H. F. T. Klare, M. Oestreich, *Chem. Commun.* 2013, 49, 1506.
- [10] C. D. F. Königs, H. F. T. Klare, M. Oestreich, Angew. Chem. Int. Ed. 2013, 52, 10076.
- [11] T. T. Metsänen, M. Oestreich, *Organometallics* **2015**, *34*, 543.
- [12] T. Stahl, H. F. T. Klare, M. Oestreich, J. Am. Chem. Soc. 2013, 135, 1248.
- [13] T. Stahl, K. Müther, Y. Ohki, K. Tatsumi, M. Oestreich, J. Am. Chem. Soc. 2013, 135, 10978.

Intoduction of the author:

Martin Oestreich

Professor Dr. Institut für Chemie, Technische Universität Berlin

Martin Oestreich (born in 1971 in Pforzheim/Germany) received his diploma degree with Paul Knochel (Marburg, 1996) and his doctoral degree with Dieter Hoppe (Münster, 1999). After a two-year postdoctoral stint with Larry E. Overman (Irvine, 1999–2001), he completed his habilitation with Reinhard Brückner (Freiburg, 2001–2005) and was appointed as Professor of Organic Chemistry at the Westfälische Wilhelms-Universität Münster (2006–2011). He also held visiting positions at Cardiff University (Wales) and at

The Australian National University in Canberra. He has been Professor of Organic Chemistry at the Technische Universität Berlin since 2011.

http://www.organometallics.tu-berlin.de/organometallics/menue/home/

TCI Related Products

C3327 [(DmpSR')RuCl(P-(*i*-Pr)₃)] C3328 [(DmpSR')RuCl(P-(4-Fluorophenyl)₃)]