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	 The dimerization of aldehydes to form benzoins (Scheme 1) is one of the oldest known organic reactions, 
first reported in 1832 by Liebig.1 The original cyanide catalyzed benzoin reaction was long appreciated for its 
simplicity and mechanistic intricacies but offered few useful synthetic applications.2 The discovery by Ukai3 in 
1943 that the essential co-factor thiamine, or vitamin B1, catalyzes the benzoin reaction provided a key clue to 
understanding a broad range of thiamine-dependent enzymes and reinvigorate interest in this class of reactions.4 
The use of ylides derived from thiamine, which are now classified as N-heterocyclic carbenes,5 led to both new 
reactions, such as the Stetter addition of aldehydes to electron-deficient olefins,6 and new catalysts types inspired 
by the chemistry of the thiazolium salt at the heart of thiamine.7 Key to the success of thiamine and its relative 
is the catalytic generation of an acyl anion equivalent.8 Typical procedures for the preparation of this reactive 
species would require harsh conditions and intricate protecting group strategies. With thiamine catalysis, this 
reactive species can be generated under aqueous and nearly neutral conditions.

	 By the year 2003, modern, enantioselective versions of the benzoin and certain Stetter reactions had 
emerged, driven by the design and preparation of new chiral azolium salts. Pioneering work by Knight and 
Leeper,9 Enders,10 and Rovis11 had converged on the use of chiral, bicyclic triazolium salts as the ideal 
platform for N-heterocyclic carbene catalysts capable of inducing highly enantioselective reactions including 
intermolecular homo-benzoin reactions,12 intramolecular Stetter reactions,13 and intramolecular aldehyde–
ketone crossed benzoin reactions.14 These methods are now well established and widely employed for the 
enantioselective synthesis of complex molecules including bioactive natural products.15
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Scheme 1.  Benzoin reaction with benzaldehydes.
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	 In late 2003, then at the University of California–Santa Barbara, we initiated a research program aimed at 
employing N-heterocyclic carbenes as catalysts for the formation of other reactive species. We recognized the 
combination of an N-heterocyclic carbene catalysts with an α-functionalized aldehyde, such as an α,β-unsaturated 
aldehyde or an α-halo aldehyde, could result in the generation of reactive species including homoenolate 
equivalents, enolate equivalents, and acyl azoliums, which serve as activated carboxylates (Scheme 2). 

 
	 Within two years of our initial studies, we had developed catalysts and conditions that allowed for 
the selective formation of each of these reactive intermediates, making possible an entirely new class of 
catalytic reactions. Key to the success of this research program, and the vast number of new enantioselective 
transformations that it has enabled, was our recognition that N-mesityl substituted triazolium salts are critical for 
high reactivity and selectivity in N-heterocyclic carbene catalyzed reactions of α-functionalized aldehydes. Our 
initial studies, completed in 2005, identified achiral N-mesityl substituted catalyst A as the minimal structure 
required for the generation of these reactive intermediates under mild conditions.16 In the following year, we 
disclosed chiral N-mesityl substituted triazolium salts B and ent-B.17

 

	 By developing an efficient synthetic route to incorporate the essential N-mesityl substitution, we are able to 
produce B on a preparative scale at modest cost. This catalyst promotes a large number of highly enantioselective 
transformations, otherwise not effected via other chiral azolium salts lacking an N-mesityl or related substitutent. 
These reactions and their scope are highlighted in the review below (Scheme 3).

	2	 NHC-Catalyzed Reactions of α-Functionalized Aldehydes
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Scheme 2.  Reactive species generation from α,β-unsaturated aldehyde with N-heterocyclic carbene.
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	 Our catalyst design borrows its chiral elements on the outstanding work of Knight and Leeper,9 who 
first reported chiral triazolium salts derived from 1,2-amino alcohols, and of Rovis,11 who first employed the 
readily available 1,2-aminoindanol for chiral azolium salts. In both cases, high quality N-mesityl-hydrazine 
hydrochloride is needed. While this is commercially available the cost is prohibitive for large scale syntheses. 
We have therefore devised a reliable procedure for the large scale preparation of this hydrazine salt from the 
corresponding aniline. Although yields are not high (36−40% yield), it can be execute on a 1 mol scale with 
inexpensive starting materials and without the need for chromatography or distillation.

	3	 Catalyst Synthesis and Counterion Effects
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Scheme 3.  Reactions promoted by chiral catalysts B and ent-B.
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	 The preparation of the chiral catalysts begins by following the work of Rovis, who has prepared 
aminoindanol derived triazoliums bearing different aromatic substituents.13 Lactam 1 is converted to the imidate 
2 with trimethyloxonium tetrafluoroborate and condensation with N-mesityl hydrazine affords 3 (Scheme 4). The 
most challenging step is the final ring closing, which fails or gives low yields under the previously developed 
conditions. Our modified procedures uses lower temperatures and HCl or HClO4 to promote the ring closure. The 
resulting chloride or perchlorate salts are readily isolated and stored.18

	 In all cases examined to date, the counterion plays no role in the reaction outcome. Thus catalysts of type A 
or B bearing chloride, perchlorate or tetrafluoroborate counterions give identical yields and enantioselectivities 
provided that at least a catalytic amount of base is used in the reactions (Scheme 5).19 The only discernable 
difference is that the chloride catalysts are somewhat more hydroscopic but this does not generally affect the 
reaction outcome.

 

	 The catalytic generation of ester enolate equivalents under mild, simple conditions that allow for 
enantioselective reactions has been a long held goal of synthetic organic chemistry. In 2006, we disclosed the use 
of N-mesityl substituted triazolium salts for the catalytic generation of ester enolate equivalents from α-halo- and 
α,β-unsaturated aldehydes. 
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	4	 Hetero-Diels Alder Reactions
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	 Racemic α-halo aldehydes undergo highly enantioselective annulations with electron deficient oxo-
dienes under remarkably mild and simple reaction conditions (Scheme 6).20 Due to the high reactivity of these 
substrates, only 0.5 mol% of chiral triazolium salt B is needed for excellent yields and enantio-selectivities. The 
racemic α-halo aldehydes undergo epimerization in the reaction conditions rending this reaction an enantio-
convergent process. The scope of this process is outstanding, with either aromatic or aliphatic substuents 
tolerated by both reaction partners.

	 The α-halo aldehyde starting materials are readily prepared in a single step from the corresponding 
aldehydes. They have, however, limited shelf life. We have therefore developed conditions for isolating 
and storing them as their bisulfite adducts and developed biphasic reaction conditions for the use of these 
convenient starting materials directly in the enantioselective annulation reactions (Scheme 7).21 Similarly 
high yields, enantioselectivities, and substrate scope are observed even under aqueous conditions. Importantly, 
this procedure works well with the commercially available bisulfite adduct of chloroacetaldehyde, making 
possible enantioselective acetate additions without the need to prepare the toxic and potentially explosive 
α-chloroaldehyde. 
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	 The identical reactive intermediates can be generated from α,β-unsaturated aldehydes and we have recently 
reported a method for highly enantioselective annulations from both aromatic and aliphatic substituted enals 
(Scheme 8).22 Under these conditions, high catalysts loadings are needed due to the fact that only a trace amount 
of the active carbene catalysts is generated by the weak bases. This procedure also expands the scope of the 
annulations to include α-hydroxy- and α-aminoenones that give products bearing valuable synthetic handles 
for further transformations. Scheidt has also applied these chiral catalysts to an intra-molecular variant of this 
reaction.23

 

	 The heterodiene can also be extended to nitrogen analogues using either α-chloroaldehydes or commercially 
available electron-deficient enals as the enolate precursors (Scheme 9).17 This procedure affords cis-disubstituted 
dihydropyridinones in good yields and with outstanding enantioselectivities.
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	 Recently, several other groups have used our catalyst and conditions for even more complex hetero-Diels-
Alder reactions. An excellent example is that of Kobayashi and coworkers, who reported the formation of amine-
substituted products by reactions of α-haloaldehydes and vinylogous amides (Scheme 10).24

	 The nature of the azolium catalyst employed in the annulation reactions plays an important role in the type 
of reactive intermediate generated. α,β-Unsaturated aldehydes can access either the homoenolate or enolate 
pathways. In general, the enolate pathway is favored by the use of weak bases (DMAP or NMM) and triazolium 
catalysts, while stronger bases (DBU) and imidazolium-derived N-heterocyclic carbenes prefer the homoenolate 
equivalent route. Reactions that proceed via the homoenolate pathway generate five-membered ring products 
such as γ-lactams, γ-lactones, or cyclopentane derivatives. For example, the same substrates shown in Scheme 11 
give either γ-lactams or dihydropyridinones depending on the catalyst type.17

	5	 Catalytic Generation of Homoenolate Equivalents

R1O2C
NHR2

OMe
cat. ent-B•BF4

+

O

H
Cl

Me
Et3N (10 equiv)

EtOAc/CCl4
rt, 50–160 h

OMe

R1O2C

O

NHR2
Me

40–80%

OMe

EtO2C

O

NHAc
Me

40%
5:1 dr

OMe

EtO2C

O

NHCbz
Me

65%
5:1 dr

OMe

EtO2C

O

NHBoc
Me

65%
7:1 dr

OMe

MeO2C

O

NHAc
Me

62%
4:1 dr

97% ee

OMe

MeO2C

O

NHCbz
Me

80%
12:1 dr
98% ee

OMe

MeO2C

O

NHBoc
Me

70%
9:1 dr

98% ee

(5 mol %)

Scheme 10.  Azadiene Diels-Alder reactions using α,β-unsaturated aldehydes.

EtO
H

O

O

Ph H

N
SO2Ar

DBU (10 mol %)
0.1 M THF

N

O

Ph

SO2ArEtO

O

EtO
OH

O

EtO
O

O

N

N

N N

N

Mes

Mes

H

Mes

+

DIPEA (10 mol %)
0.05 M toluene/THF

(cat. C, 10 mol %)

cat. A
(10 mol %)

homoenolate equivalent

enolate

N

O

EtO2C
Ph

SO2Ar

36% conv.
10:1 lactam:DA product

63% conv. 
 1:20 lactam: DA product

N N MesMes
Cl

Ar = p-C6H5OMe

Scheme 11.  Catalyst effects with α,β-unsaturated aldehydes and imines.



2011.1 No.1492011.1 No.149

9

	 In general, imidazolium-derived catalysts are superior to triazolium-derived variants for γ-lactone25 and 
γ-lactam26 formation, with commercially available IMesCl (cat. C, CAS Nr. 141556-45-8) as the best achiral 
catalysts for many of these transformations (Scheme 12). 

	 For certain highly reactive electrophiles, N-mesityl substituted triazolium salts are also active. The actual 
reaction mechanisms may be more complex in these cases, but the products are those derived from formal 
homoenolate generation and addition. Several such examples are listed below.

	 Saccharine derived-cyclic ketimines are unexpectedly good electrophiles in NHC-catalyzed annulations 
with enals using achiral triazolium salt A (Scheme 13).27 These reactions demonstrate broad scope in both the 
enal and ketimine reaction partner and afford unique polycyclic products in excellent yield and with low catalysts 
loading. Although chiral triazolium salt B is also an excellent catalyst for this reaction, enantioselectivities are 
relatively modest. This reflects the known difficulty of effecting highly enantioselective reactions that proceed 
via the homoenolate pathway.

	 When α,β-unsaturated N-tosyl ketimines are used as substrates, bicyclic β-lactams, rather than γ-lactams are 
formed (Scheme 14).28 This reaction is most easily thought of as a conjugate addition of the homoenolate derived 
from the α,β-unsaturated aldehyde followed by ring-closing reactions, although the actual reaction mechanism 
probably involves a different pathway. This remarkable cascade process affords enantiopure β-lactams in 
excellent yields and stereoselectivities.
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	 A similar reaction for the formation of enantiopure cyclopentyl β-lactones is also possible with the same 
catalyst and unsaturated aldehydes (Scheme 15).29 In this case, the use of α'-hydroxyenones is essential and 
provides a useful synthetic handle for the elaboration of the products. 

	 With enones bearing an aromatic group, the initial β-lactone products undergo spontaneous decarboxylation 
to afford disubstituted-cyclopentenes (Scheme 16). The overall reaction allows the combination of an enal and a 
simple enone to give enantioenriched cyclopentenes in a single step and under mild, simple reaction conditions.30
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	 In all of the reactions noted above, catalyst turnover is affected by the formation of an acyl azolium species 
that undergoes a lactonization or lactamization reaction. These acyl azolium intermediates therefore serve 
as catalytically generated activated carboxylates and can be used for esterification and amidation reactions. 
By choosing the appropriate substrates, N-heterocyclic carbene catalysts can effect both esterifications and 
amidations under catalytic conditions that do not require coupling reagents or produce chemical waste.

	 The first reports on the catalytic generation of acyl azoliums for esterification reactions utilized simpler 
azolium salts. In 2004, our group reported the diastereoselective opening of α,β-epoxyaldehydes with simple 
thiazolium-derived ylides (Scheme 17).31 The N-mesityl substituted triazolium salt A also catalyzes this reaction 
and is in many cases the superior reagent. Rovis, also in 2004, reported the generation of acyl azoliums from 
α-halo aldehydes using N-phenyl substituted triazolium salt E (Scheme 18).32 Rovis has also described an 
impressive example of enantioselective protonation using a chiral N-pentafluorophenyl substituted triazolium 
salt.33

	6	 Catalytic Generation of Activated Carboxylates 
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	 Although a number of azolium precatalysts can be used for redox esterification reactions of α-functionalized 
aldehydes, the N-mesityl or N-pentafluorophenyl substituted triazolium salts usually give superior results. A 
rapidly growing body of literature on these reactions has established that almost any aldehyde with an α-leaving 
group or reversible functionality serves as a substrate for NHC-catalyzed redox esterifications. The N-mesityl 
substituted catalyst is particularly suited for redox reaction of α,β-unsaturated aldehydes (Scheme 19).16 
Other applications include the opening of enantioenriched formyl cyclopropanes to generate esters34 or 
dihydropyranones reported by You and coworkers.35

	 A curious finding of both our group and several others is the reluctance of catalytically generated acyl 
azoliums to undergo reactions with amines to form amides. This property can be exploited for the chemoselective 
acylation of alcohols in the presence of amines. The origin of this unusual reactivity lies in the unique properties 
of the acyl azoliums themselves, which do not readily react with amines to form amide products.36 Successful 
NHC-catalyzed amidations do occur with the addition of suitable co-catalysts. In our hands, we have found that 
the addition of imidazole or similar triazoles make catalytic amidations of α-functionalized aldehydes possible, 
via the intermediacy of an acyl imidazole that reacts with the amine (Scheme 20).37 Similar chemistry using 
HOAt as the co-catalytic acylating agent was reported simultaneously by Rovis.38

	 The combination of a chiral N-heterocyclic carbene catalysts and an ynals should lead to the formation of an 
α,β-unsaturated acyl azolium that may act as an electrophile, representing a completely different activation mode 
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Scheme 19.  Redox reactions promoted by catalyst A
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Scheme 20.  Redox amidations.
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than the acyl anion, homoenolate, ester enolate, or activated carboxylate equivalents discussed so far. Using the 
identical chiral catalyst, we succeeded in identifying conditions for the selective generation of such intermediates 
and their use in annulation reactions with enolic substrates, such as kojic acid derivatives (Scheme 21).39

	 Our initial work focused on kojic acids as substrates due to their known synthetic utility, but similar 
conditions give annulation products from pyruvates in excellent yields and selectivities. Recently reported 
chemistry from other groups using 1,3-dicarbonyls as nucleophiles are likely to proceed via a similar mechanism 
and should be amenable to enantioselective catalysis with chiral catalyst B or its relatives.40 The reactions may 
also be conducted by starting from the α,β-unsaturated aldehyde and a stoichiometric oxidant with no effect to 
the observed enantioselectivities.39

	 The mechanism of this reaction is also of considerable interest. Although we initially believed the α,β-
unsaturated acyl azolium 4 would be an excellent Michael acceptor, we have been unsuccessful in adding any 
nucleophiles other than enolates or MeOH/water. This led us to extensively investigate the detailed mechanism 
revealing an NHC-catalyzed Coates-Claisen rearrangement as the key step. This mechanistic postulate 
rationalizes the exceptional enantioselectivities observed in this reaction (Scheme 22).
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	 The majority of the reaction described in this review use α,β-unsaturated aldehydes as starting materials. 
Although not obscure compounds, the vast majority of substrates require multiple steps for their preparation. 
This is particularly true of the highly desired heteroaromatic substrates for which the methods of enal synthesis 
are complicated by the presence of basic functionality. 

	 In order to improve the scope of the NHC-catalyzed reactions and expand the range of products that may be 
prepared with these methods, we have sought readily prepared, bench stable surrogates for aldehydes reaction 
partners. For ester enolate equivalents, the α-chloroaldehyde bisulfite adducts are ideal,21 but these cannot be 
used for reactions involving homoenolate equivalents. 

	 We have therefore developed α'-hydroxyenones 6 as readily prepared surrogates for α,β-unsaturated 
aldehydes.41 These substrates can be prepared on a multigram scale from commercially available ketone 5 and 
aromatic aldehydes (Scheme 23).

	 In the presence of an N-heterocyclic carbene, the α'-hydroxyenones undergo identical reactions as the 
corresponding α,β-unsaturated aldehydes. In this case, the key reactive intermediates are formed by a retro-
benzoin reaction of the initial NHC-ketone adduct (Scheme 24).42

	 These substrates are particularly well suited for the synthesis of cyclopentenes and lactams, with selected 
examples shown in Scheme 25. Due to the increased steric demands of the ketone substrates, these reactions 
work best with achiral triazolium precatalyst A. We therefore highly recommend these conditions for the 
preparation of racemic mixtures and the preparation of small libraries. Should the enantiopure compounds be 
needed, they can be prepared with chiral catalysts B and ent-B from the α,β-unsaturated aldehyde. 

	8	 α'-Hydroxyenones as Enal Surrogates
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	 The α'-hydroxyenones are also outstanding substrates for NHC-catalyzed amidations in combination with 
1,2,4-triazole as a co-catalyst.43 Unlike most amidation conditions that require excess amounts of coupling 
reagents and generate a large amount of waste, these conditions affect catalytic amidations with no products other 
than acetone and only substoichiometric quantities of reagents. Selected examples are shown in Scheme 26.
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	 In just four years since the initial report, N-mesityl substituted chiral triazolium salts have proven to be one 
of the most versatile and selective catalysts known. In addition to the remarkable range of products they may be 
used to construct, they are notable for their high stability, mild reaction conditions (20–40 °C), and tolerance to 
air and water. A single chiral catalysts work well for nearly all of the reactions reported to date. For a few NHC-
catalyzed reactions for which B and ent-B give inferior enantioselectivities, a number of new chiral scaffolds 
are emerging. Notable, all of these structures maintain the essential N-mesityl triazolium core that has proved 
to be necessary for both reactivity and selectivity in these new generations of N-heterocyclic carbene catalyzed 
reactions. The commercial availability of these catalysts should encourage the discovery of even more new 
reactions and applications of the complex, enantiopure products they afford.
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