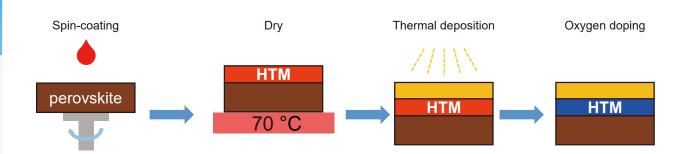


Hole Transport Materials for Stable Perovskite Solar Cells TOP-HTMs

TOP-HTM-α1
1g / 5g / 25g


TOP-HTM-α21g / 5g / 25g

| T3722|

Advantages

- Realizes a high PCE, with or without additives.¹⁾
- · Produces a highly stable perovskite solar cell with low cost.
- It is possible to achieve even higher PCE and superior device stability by tuning the compositions of the perovskite layer.^{2,3)}

Device Fabrication Process

- 1. In a glove box filled with N_2 gas, hole transport layers are deposited on the perovskite layer by spin-coating (slope 5 s, 4000 rpm 30 s, slope 5 s).
- 2. The resulting film is dried on a hot plate at 70 °C for 30 minutes.
- 3. A metal electrode (Au, etc.) is thermally deposited on the hole transport layer.
- 4. The solar cell devices are stored in air with ~20% relative humidity to promote oxygen doping.

For more details, see the reference 1.

Application: Device performance of MAPbl₃-based solar cells 1)

HTMs are dissolved in solvents at a concentration of 40 mg/mL.

- With additives
 Chlorobenzene is used as a solvent. LiTFSI and TBP are added to the HTM solution.
- Without additives
 1,1,2,2-Tetrachloroethane is used as a solvent.

Device Structure		
Au		
НТМ		
MAPbl ₃ mesoporous TiO ₂		
Compact TiO ₂		
FTO/Glass		

HTM	PCE (%)	Stability (200 h)
TOP-HTM-α1 with additive	13.1	-
TOP-HTM-α1	15.0	0.50
TOP-HTM-α2 with additive	18.6	0.46
TOP-HTM-α2	16.6	0.69
Spiro-OMeTAD with additive	18.4	<0.10
Spiro-OMeTAD	12.1	-

Application: Improvement of perovskite layer 2)

TOP-HTM- α 2 is dissolved in 1,1,2,2-tetrachloroethane without additives.

PCE and device stability of perovskite solar cells using TOP-HTM- α 2 are gotten better by changing composition of perovskite layer from MAPbl₃ to FAPbl₃.

Device Structure

Au
НТМ
MAPbl ₃ or FAPbl ₃ mesoporous TiO ₂
Compact TiO ₂
FTO/Glass

HTM / Perovskite	PCE (%)	Stability (400 h)
TOP-HTM-α2 / MAPbl ₃	14.31	0.75
TOP-HTM- α 2 / FAPbl $_3$	16.86	0.90
Spiro-OMeTAD with additive / $FAPbI_3$	15.11	0.69
Spiro-OMeTAD / FAPbl ₃	10.44	0.87

Hole Transport Materials for Stable Perovskite Solar Cells: TOP-HTMs

Application: Control of hole transport layer (HTL) morphology 3)

TOP-HTM- α 2 is dissolved in chlorobenzene or dichloromethane. LiTFSI and TBP as additives are added to the solution.

The composition of perovskite layer is $FA_{0.72}MA_{0.14}Cs_{0.14}Pbl_{2.95}Br_{0.05}$.

Perovskite solar ce IIs using TOP-HT-α2 with additives show superior PCE with improvement of HTL morphology by using dichloromethane instead of chlorobenzene.

Au		
НТМ		
$FA_{0.72}MA_{0.14}Cs_{0.14}Pbl_{2.95}Br_{0.05}$		
SnO ₂		
FTO/Glass		

Device Structure

HTM	Solvent	PCE (%)
TOP-HTM-α2 with additive	Chlorobenzene	18.67
TOP-HTM-α2 with additive	Dichloromethane	20.18
Spiro-OMeTAD with additive	Chlorobenzene	18.85
Spiro-OMeTAD with additive	Dichloromethane	18.55

References

- 1) Additive-free, Cost-Effective Hole-Transporting Materials for Perovskite Solar Cells Based on Vinyl Triarylamines H. Nishimura, I. Okada, T. Tanabe, T. Nakamura, R. Murdey, A. Wakamiya, ACS Appl. Mater. Interfaces **2020**, *12*, 32994. https://doi.org/10.1021/acsami.0c06055
- 2) Experimental investigation of additive free-low-cost vinyl triarylamines based hole transport material for FAPbl₃-based perovskite solar cells to enhance efficiency and stability
 - A. Kumar, S. Singh, M. K A Mohammed, D. S Ahmed, *Mater. Res. Express* **2023**, *10*, 044003. https://doi.org/10.1088/2053-1591/accd41
- 3) An Alternative to Chlorobenzene as a Hole Transport Materials Solvent for High-Performance Perovskite Solar Cells S. H. Lee, S. B. Lim, J. Y. Kim, S. Lee, S. Y. O, M. Kim, *Crystals* **2023**, *13*, 1667. https://doi.org/10.3390/cryst13121667

Hole Transport Materials for Stable Perovskite Solar Cells: TOP-HTMs

Related Products

Formamidine Hydroiodide (= FAI) (99.99%, trace metals basis) [for Perovskite precursor]

1g / 5g / 25g [F1263] 1g/5g/25g/100g [M2556]

25g / 250g [B2542]

Methylamine Hydroiodide (= MAI) (Low water content) Spiro-OMeTAD 1g / 5g [T3672] **Lithium Bis(trifluoromethanesulfonyl)imide (= LiTFSI)**

4-tert-Butylpyridine 5g / 25g [**B0388**]

Lead(II) Iodide (99.99%, trace metals basis) [for Perovskite precursor]

1g/5g/25g/100g/1kg [L0279]

Lead(II) Bromide [for Perovskite precursor] 1g / 5g / 25g [L0288] **Lead(II) Chloride** (purified by sublimation) [for Perovskite precursor] 1g / 5g [L0291]

Lead(II) Chloride [for Perovskite precursor] 1g/5g/25g [L0292]

For further information please refer to our website at www.TCIchemicals.com. TCI perovskite

Ordering and **Customer Service**

TCI AMERICA

:800-423-8616 / 503-283-1681 Tel Tel :888-520-1075 / 503-283-1987 E-mail: Sales-US@TCIchemicals.com

TCI EUROPE N.V.

: +32 (0)3 735 07 00 : +32 (0)3 735 07 01 E-mail: Sales-EU@TCIchemicals.com

TCI Deutschland GmbH

: +49 (0)6196 64053-00 : +49 (0)6196 64053-01 E-mail: Sales-DE@TCIchemicals.com

: +44 (0)1865 78 45 60 E-mail: Sales-UK@TCIchemicals.com

梯希爱(上海)化成工业发展有限公司

Tel :800-988-0390 / 021-67121386 : 021-6712-1385 E-mail: Sales-CN@TCIchemicals.com

Tokyo Chemical Industry UK Ltd. Tokyo Chemical Industry (India) Pvt. Ltd.

: 1800 425 7889 / 044-2262 0909 E-mail: Sales-IN@TCIchemicals.com

TOKYO CHEMICAL INDUSTRY CO., LTD.

Tel: +81 (0)3-5640-8878

E-mail:globalbusiness@TCIchemicals.com

[•] Chemicals itemized in this brochure are for research and testing use only. Please avoid use other than by chemically knowledgeable professionals. • Information such as listed products and its specifications and so on are subject to change without prior notice. • The contents may not be reproduced or duplicated in whole or in part without permission of Tokyo Chemical Industry Co., Ltd.