Maintenance Notice (5:15 AM - 4:55 PM May 24, 2025): This website is scheduled to be unavailable due to maintenance. We appreciate your patience and understanding.
Published TCIMAIL newest issue No.197
Maximum quantity allowed is 999
Since the first report was published by Miyasaka et al.,1) perovskite solar cells have been drastically developed for 10 years. One of the main bottlenecks towards large-scale production is in the hole transport layer, though many researchers have challenged to stabilize and upscale perovskite solar cell for a practical use. Some conventional hole transport materials, Spiro-OMeTAD and PTAA, require expensive material cost and are destabilized due to a necessary dopant for a carrier transport.
Recently, Getautis, Albrecht et al. developed some hole selective self-assemble monolayer (SAM) forming agents, 2PACz [Product No. C3663], MeO-2PACz [Product No. D5798] Me-4PACz [Product No. M3359], Me-2PACz [Product No. M3477] and Br-2PACz [Product No. B6391], for high performance perovskite solar cell. 2PACz, MeO-2PACz, Me-4PACz and Me-2PACz can form a monolayer on a metal oxide surface anchored by the phosphonic acid moiety. These materials are useful for a tandem solar cell because it makes a conformal coverage on rough textures. A perovskite solar cell using the SAM hole transport layer can realize more than 20% efficiency without any dopants, and very cost effective because extremely low material consumption. Organic thin film solar cell (OPV) using 2PACz showed 18.03% power conversion efficiency that is better performance than those of using the existing PEDOT:PSS. Perovskite-Silicon tandem solar cell using Me-4PACz as a hole contact material realized 29.15% efficiency (Table 1). Getautis,Anthopoulos et al. reported that the OPV device using Br-2PACz showed 18.4% efficiency which was better performance than the PEDOT:PSS device.
Stabilized power conversion efficiencies with self-assembled monolayer (SAM):
(CsMAFA = Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3, MAFA = MA0.05 FA0.95Pb(I0.95Br0.05)3,
Cs = cesium, MA = methylammonium, FA = formamidinium, CIGSe = copper indium gallium selenide)
*These data are taken from References.1-7)
Method 1: Dip coating
suitable for large-area coating and textured substrates
Method 2: Spin coating
suitable for fast research & optimization
*The minimum needed dipping time can vary from minutes to hours. After some further testing with 2PACz, researchers found more reproducible results with rather 0.5 mmol/L and 5 min dipping. Note that optimal concentration and dipping time may vary depending on the used substrate oxide and pre-treatment.