Nucleosides, Nucleotides, Nucleic Acids and Related Reagents

Nucleosides and Their Analogs
Nucleotides and Their Analogs
Nucleic Acids
Enzymes and Coenzymes related to Nucleic Acids
Nucleobases and Their Analogs
Pharmacologically-Active Nucleosides and Nucleobases
Nucleic Acid Synthesis Agents
Genetic information is stored in DNA as combinatorial codes held in nucleosides and nucleotides, in which form it is passed from parents to their offspring. Analogs of nucleosides and nucleotides are used clinically as medicinal agents such as reverse transcriptase inhibitors. Therefore, the preparation and development of these species as effective, selective and nontoxic antiviral and antitumor agents has been the subject of intense research.\(^1\)

In addition to this, the development of Polymerase Chain Reaction (PCR) methodology has brought a dramatic change and rapid development in studies of DNA. At the current time the draft version in decoding and mapping human genome has been almost completed, and the functional analyses of genome and analyses of “Single Nucleotide Polymorphism” (SNP) are being vigorously pursued. Discovery of the RNAi process has facilitated the fast progression of studies of RNA. At the same time, chemically synthesized oligoDNA and oligoRNA have been studied as potential antisense DNAs, siRNAs and DNA aptamers, as oligonucleotide therapeutic agents, primers for PCR method, and elements of DNA computers.

Nucleosides and Their Analogs

Nucleosides are glycosylamines made by attaching a nucleobase to a ribose or 2’-deoxyribose, which can be phosphorylated producing nucleotides. Nucleoside analogs are an established class of clinically useful medicinal agents possessing a wide range of antiviral and anticancer activities. Consequently, extensive modifications have been made to both the heterocyclic base and the sugar moiety. Some representative examples of these are 9-[(2-hydroxyethoxy)methyl]guanine (acyclovir) developed by Elion in 1977, which shows antiviral activity; 3’-azido-3’-deoxythymidine (AZT) discovered by Mitsuya et al. in 1985 and used for the treatment of HIV infection; and cytosine β-D-arabinofuranoside (cytarabine) approved by the FDA in 1969 and which has been shown to display a range anticancer activities. In addition, modified nucleosides such as 2’-deoxy-5-methylcytidine are ubiquitous in living systems, and their functions have received due attention from the scientific community.\(^2\)

Protected nucleosides, in which reactive amino and hydroxyl groups have been masked, e.g. N\(^6\)-benzoyl-5’-O-(4,4’-dimethoxytrityl)-2’-deoxyadenosine (Bz-DMT-dA), have been used for chemical synthesis of DNA and RNA.

Nucleosides and Their Analogs

<table>
<thead>
<tr>
<th>Nucleosides and Their Analogs</th>
<th>Pyrimidine Nucleosides</th>
<th>Nucleosides and Their Analogs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z0022 200mg 1g</td>
<td>D3583 1g 5g</td>
<td>D2396 5g 25g</td>
</tr>
<tr>
<td>C2022 1g 5g 25g</td>
<td>C0214 1g 5g 25g</td>
<td>A0559 10mg</td>
</tr>
<tr>
<td>D3614 1g</td>
<td>U0020 5g 25g</td>
<td>6-Azauridine CAS RN: 54-25-1</td>
</tr>
<tr>
<td>D3614 1g</td>
<td></td>
<td>2’-O-Methylcytidine CAS RN: 2140-72-9</td>
</tr>
<tr>
<td>2’-Azido-2’-deoxyuridine CAS RN: 26929-63-7</td>
<td>6-Azauridine CAS RN: 54-25-1</td>
<td>A2942 25mg 100mg</td>
</tr>
</tbody>
</table>

Please inquire for pricing and availability of listed products to our local sales representatives.
Please inquire for pricing and availability of listed products to our local sales representatives.

<table>
<thead>
<tr>
<th>Code</th>
<th>Quantity (g)</th>
<th>Product Name</th>
<th>CAS RN</th>
</tr>
</thead>
<tbody>
<tr>
<td>D3615</td>
<td>1g 5g</td>
<td>2’-Deoxy-2’-fluorouridine</td>
<td>784-71-4</td>
</tr>
<tr>
<td>T2549</td>
<td>5g 25g</td>
<td>2’,3’,5’-Tri-O-acetyluridine</td>
<td>4105-38-8</td>
</tr>
<tr>
<td>A2232</td>
<td>20mg 100mg</td>
<td>5-Aza-2’-deoxycytidine</td>
<td>2353-33-5</td>
</tr>
<tr>
<td>A2033</td>
<td>100mg 1g</td>
<td>5-Acetytidine</td>
<td>320-67-2</td>
</tr>
<tr>
<td>D3610</td>
<td>100mg 500mg 5g</td>
<td>2’-Deoxy-5-methylcytidine</td>
<td>838-07-3</td>
</tr>
<tr>
<td>D3642</td>
<td>1g 5g</td>
<td>2’-Deoxy-5-fluorocytidine</td>
<td>10356-76-0</td>
</tr>
<tr>
<td>D3610</td>
<td>100mg 500mg 5g</td>
<td>2’-Deoxy-5-fluorocytidine</td>
<td>3094-09-5</td>
</tr>
<tr>
<td>I0258</td>
<td>1g 5g 25g</td>
<td>5-Iodo-2’-deoxyuridine</td>
<td>611-53-0</td>
</tr>
<tr>
<td>T0233</td>
<td>1g 5g 25g</td>
<td>Thymidine</td>
<td>50-89-5</td>
</tr>
<tr>
<td>T2511</td>
<td>100mg 1g</td>
<td>Trifluorothymidine</td>
<td>70-00-8</td>
</tr>
<tr>
<td>A2052</td>
<td>1g 5g</td>
<td>Azidothymidine</td>
<td>30516-87-1</td>
</tr>
<tr>
<td>D4220</td>
<td>50mg 200mg</td>
<td>2’-Deoxy-5-(hydroxymethyl)cytidine</td>
<td>7226-77-9</td>
</tr>
<tr>
<td>F0534</td>
<td>1g 5g 25g</td>
<td>5-Fluorocytidine</td>
<td>2341-22-2</td>
</tr>
<tr>
<td>M3153</td>
<td>250mg 1g</td>
<td>5-Methylcytidine</td>
<td>2140-61-6</td>
</tr>
<tr>
<td>D4342</td>
<td>1g 5g</td>
<td>5-Deoxy-5-fluorocytidine</td>
<td>66335-38-4</td>
</tr>
<tr>
<td>C2035</td>
<td>1g 5g</td>
<td>Cytarabine</td>
<td>31448-54-1</td>
</tr>
<tr>
<td>C2208</td>
<td>5g 25g</td>
<td>2',2’-O-Anhydro-5-methyluridine</td>
<td>863329-66-2</td>
</tr>
<tr>
<td>A2431</td>
<td>1g</td>
<td>Ribavirin</td>
<td>36791-04-5</td>
</tr>
<tr>
<td>A2528</td>
<td>50mg</td>
<td>Acadesine</td>
<td>2627-69-2</td>
</tr>
<tr>
<td>M2399</td>
<td>50mg 250mg</td>
<td>Mizoribine</td>
<td>50924-49-7</td>
</tr>
<tr>
<td>B3094</td>
<td>1g 5g</td>
<td>N’-Benzoylcytidine</td>
<td>13089-48-0</td>
</tr>
<tr>
<td>B3102</td>
<td>100mg 1g</td>
<td>Brivudine</td>
<td>69304-47-8</td>
</tr>
<tr>
<td>B3404</td>
<td>100mg</td>
<td>Gemcitabine Hydrochloride</td>
<td>122111-03-9</td>
</tr>
</tbody>
</table>
Nucleosides, Nucleotides, Nucleic Acids and Related Reagents

B3631 1g 5g
N°-Benzoyl-3‘-5‘-O-(1,3,3,3-tetraisopropyl-1,3-disiloanediyl)cytidine
CAS RN: 69304-43-4

L0217 100mg 1g
Lamivudine
CAS RN: 134678-17-4

C0525 100mg 1g
Cytidine Sulfate
CAS RN: 32747-18-5

B3087 1g 5g
N°-Benzoyl-5‘-O-(4‘,4‘-dimethoxytrityl)-2‘-deoxyctydine
CAS RN: 67219-55-0

F0842 500mg 5g
Famciclovir
CAS RN: 104227-87-4

H1290 5g 25g
9-(2-Hydroxyethyl)adenine
CAS RN: 707-99-3

A1915 1g 5g 25g
Adefovir Dipivoxil
CAS RN: 142340-99-6

D4256 1g 5g
Diethyl [2-(6-Amino-9-purin-9-yl)ethoxy]methylphosphonate
CAS RN: 116384-53-3

A2414 100mg 1g
Acyclovir
CAS RN: 59277-89-3

B3087 1g 5g
Penciclovir
CAS RN: 82410-32-0

E0899 50mg 200mg
Entecavir Monohydrate
CAS RN: 209216-23-9

P2164 200mg 1g
Valacyclovir Hydrochloride
CAS RN: 209216-23-9

D4137 5g
2‘-Deoxyadenosine Anhydrous
CAS RN: 958-09-8

D3584 1g 5g
2‘-Deoxyinosine
CAS RN: 890-38-0

D0046 5g 25g
2‘-Deoxyadenosine Monohydrate
CAS RN: 163773-93-6

N1144 100mg
Nelarabine
CAS RN: 121032-29-9

C2206 1g 5g
6-Chloropurine Riboside
CAS RN: 5399-87-1

I0037 25g 500g
Inosine
CAS RN: 58-63-9

C3460 100mg 1g
N°-Dibenzoyladenosine
CAS RN: 98463-04-0

F0656 200mg 1g
2-Fluoroadenosine
CAS RN: 146-78-1

A2054 1g 5g
2-Amino-8-chloropurine Riboside
CAS RN: 2004-07-1

C2192 100mg 1g
2-Chloroadenosine
CAS RN: 146-77-0

A2135 5g 25g
2-Aminoadenosine
CAS RN: 2096-10-8

G0171 5g 25g 100g
Guanosine
CAS RN: 118-00-3

B3087 1g 5g
2°-O-Methylguanosine
CAS RN: 2140-71-8

M2318 200mg 1g
2°-O-Methyladenosine
CAS RN: 2140-79-6

T2691 1g 5g
2°-O-Methyladenosine
CAS RN: 2140-79-6

T2692 1g 5g
2°-O-Methyladenosine
CAS RN: 2140-79-6

G0315 5g 25g
Triacetlyganciclovir
CAS RN: 86357-14-4

D0052 1g 5g 25g
2‘-Deoxyguanosine Hydrate
CAS RN: 961-07-9

C2206 1g 5g
6-Chloropurine Riboside
CAS RN: 5399-87-1

A0152 1g 5g 25g 100g
Adenosine
CAS RN: 58-61-7

M2291 1g
2°-O-Methyladenosine
CAS RN: 2140-79-6

B3087 1g 5g
9-(2-Hydroxypropyl)adenine
CAS RN: 958-09-8

D3584 1g 5g
5,6-Dichlorobenzimidazole
1-β-D-Ribofuranoside
CAS RN: 53-85-0

C4999 50mg
Cladribine
CAS RN: 4291-63-8

D3065 100mg 1g
Ganciclovir
CAS RN: 82410-32-0

D3066 100mg 500mg
Didanosine
CAS RN: 69655-05-6

D4292 100mg 1g
2°,3°-Dideoxynosine
CAS RN: 4097-22-7

C2206 1g 5g
6-Chloropurine Riboside
CAS RN: 5399-87-1

F0656 200mg 1g
2-Fluoroadenosine
CAS RN: 146-78-1

A0152 1g 5g 25g 100g
Adenosine
CAS RN: 58-61-7

A0152 1g 5g 25g 100g
Adenosine
CAS RN: 58-61-7

A0152 1g 5g 25g 100g
Adenosine
CAS RN: 58-61-7

Please inquire for pricing and availability of listed products to our local sales representatives.
Nucleosides, Nucleotides, Nucleic Acids and Related Reagents

Please inquire for pricing and availability of listed products to our local sales representatives.

Nucleotides and Their Analogs

Nucleotides are formed from the condensation of nucleoside and a phosphate group. The nucleosides themselves are formed from a nucleobase (see below) and a sugar moiety which is either ribose (RNA) or 2'-deoxyribose (DNA). Nucleotides are the minimum structural units of DNA and RNA, and serve as important cofactors in metabolism.
Nucleosides, Nucleotides, Nucleic Acids and Related Reagents

Please inquire for pricing and availability of listed products to our local sales representatives.

Nucleosides, Nucleotides, Nucleic Acids and Related Reagents

6

Please inquire for pricing and availability of listed products to our local sales representatives.

Nucleosides, Nucleotides, Nucleic Acids and Related Reagents

Please inquire for pricing and availability of listed products to our local sales representatives.

Nucleosides, Nucleotides, Nucleic Acids and Related Reagents

Please inquire for pricing and availability of listed products to our local sales representatives.

Nucleosides, Nucleotides, Nucleic Acids and Related Reagents

Please inquire for pricing and availability of listed products to our local sales representatives.

Nucleosides, Nucleotides, Nucleic Acids and Related Reagents

Please inquire for pricing and availability of listed products to our local sales representatives.
<table>
<thead>
<tr>
<th>Code</th>
<th>Quantity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0224</td>
<td>25g 250g</td>
<td>5-N-Acetylcytosine CAS RN: 14631-20-0
5-Acetylcytosine CAS RN: 14631-20-0
5-Ethynyluracil CAS RN: 59989-18-3
5-Acetyluracil CAS RN: 6214-65-9
5,6-Dimethyluracil CAS RN: 26305-13-5
5-Fluoroocotic Acid Monohydrate CAS RN: 220141-70-8
5-Aminoocotic Acid CAS RN: 7164-43-4
5,6-Dimethyluracil CAS RN: 26305-13-5
5-Fluoroocotic Acid Monohydrate CAS RN: 220141-70-8
5-Aminoocotic Acid CAS RN: 7164-43-4</td>
</tr>
<tr>
<td>T0234</td>
<td>5g 25g 100g</td>
<td>5-Thymine CAS RN: 65-71-4
5,6-Dimethyluracil CAS RN: 26305-13-5
5-Fluoroocotic Acid Monohydrate CAS RN: 220141-70-8
5-Aminoocotic Acid CAS RN: 7164-43-4
5,6-Dimethyluracil CAS RN: 26305-13-5
5-Fluoroocotic Acid Monohydrate CAS RN: 220141-70-8
5-Aminoocotic Acid CAS RN: 7164-43-4
5,6-Dimethyluracil CAS RN: 26305-13-5
5-Fluoroocotic Acid Monohydrate CAS RN: 220141-70-8
5-Aminoocotic Acid CAS RN: 7164-43-4</td>
</tr>
</tbody>
</table>

Please inquire for pricing and availability of listed products to our local sales representatives.
<table>
<thead>
<tr>
<th>Code</th>
<th>Weight</th>
<th>Name</th>
<th>CAS Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>D4324</td>
<td>1g</td>
<td>7-Deaza-8-hypoxanthine</td>
<td>3680-71-5</td>
</tr>
<tr>
<td>C2306</td>
<td>1g 5g</td>
<td>6-Chloro-7-deazapurine</td>
<td>3680-69-1</td>
</tr>
<tr>
<td>A0907</td>
<td>5g 25g</td>
<td>Allopurinol</td>
<td>315-30-0</td>
</tr>
<tr>
<td>A1041</td>
<td>100mg 1g 5g</td>
<td>4-Aminopyrazolo[1,4]-pyrimidine</td>
<td>2380-63-4</td>
</tr>
<tr>
<td>C0278</td>
<td>5g 25g</td>
<td>6-Chloropurine</td>
<td>87-42-3</td>
</tr>
<tr>
<td>H0311</td>
<td>5g 25g</td>
<td>Hypoxanthine</td>
<td>68-94-0</td>
</tr>
<tr>
<td>A0149</td>
<td>5g 25g 250g</td>
<td>Adenine</td>
<td>73-24-5</td>
</tr>
<tr>
<td>M1925</td>
<td>1g 5g</td>
<td>6-Methoxypurine</td>
<td>1074-89-1</td>
</tr>
<tr>
<td>A0907</td>
<td>5g</td>
<td>Allopurinol</td>
<td>315-30-0</td>
</tr>
<tr>
<td>A1041</td>
<td>1g 5g</td>
<td>4-Aminopyrazolo[1,4]-pyrimidine</td>
<td>2380-63-4</td>
</tr>
<tr>
<td>C0278</td>
<td>5g 25g</td>
<td>6-Chloropurine</td>
<td>87-42-3</td>
</tr>
<tr>
<td>A0149</td>
<td>5g 25g 250g</td>
<td>Adenine</td>
<td>73-24-5</td>
</tr>
<tr>
<td>M1925</td>
<td>1g 5g</td>
<td>6-Methoxypurine</td>
<td>1074-89-1</td>
</tr>
<tr>
<td>A0907</td>
<td>5g</td>
<td>Allopurinol</td>
<td>315-30-0</td>
</tr>
<tr>
<td>A1041</td>
<td>1g 5g</td>
<td>4-Aminopyrazolo[1,4]-pyrimidine</td>
<td>2380-63-4</td>
</tr>
<tr>
<td>C0278</td>
<td>5g 25g</td>
<td>6-Chloropurine</td>
<td>87-42-3</td>
</tr>
</tbody>
</table>
Pharmacologically-Active Nucleosides and Nucleobases for Research and Experimental Use

Typical nucleosides and nucleobases used in pharmacology research are shown below, and serve as important cofactors in metabolism.

<table>
<thead>
<tr>
<th>Product Code</th>
<th>Quantity</th>
<th>CAS RN</th>
<th>Name</th>
<th>Molecular Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>N0958</td>
<td>20mg 100mg</td>
<td>NU 2058</td>
<td>5,6-Dichlorobenzimidazole Hydrochloride</td>
<td>![Molecule Image]</td>
</tr>
<tr>
<td>D4295</td>
<td>1g 5g</td>
<td>M2073</td>
<td>3-Methylxanthine</td>
<td>![Molecule Image]</td>
</tr>
<tr>
<td>D3604</td>
<td>25g</td>
<td>M2432</td>
<td>1-Methylxanthine</td>
<td>![Molecule Image]</td>
</tr>
<tr>
<td>A2805</td>
<td>25g 100g</td>
<td>B4134</td>
<td>8-Bromo-3-methylxanthine</td>
<td>![Molecule Image]</td>
</tr>
<tr>
<td>B4454</td>
<td>1g 200mg</td>
<td>B3456</td>
<td>8-Bromo-7-(2-butyn-1-yl)-3-methylxanthine</td>
<td>![Molecule Image]</td>
</tr>
<tr>
<td>D5146</td>
<td>1g 5g</td>
<td>C0293</td>
<td>8-Chlorotheophylline</td>
<td>![Molecule Image]</td>
</tr>
<tr>
<td>X0007</td>
<td>1g 5g</td>
<td>F0151</td>
<td>5-Fluorouracil</td>
<td>![Molecule Image]</td>
</tr>
<tr>
<td>F0321</td>
<td>1g 5g 25g 500g</td>
<td>F0321</td>
<td>5-Fluorocytosine</td>
<td>![Molecule Image]</td>
</tr>
<tr>
<td>F0151</td>
<td>1g 5g 25g</td>
<td>F1296</td>
<td>Favipiravir</td>
<td>![Molecule Image]</td>
</tr>
<tr>
<td>A2528</td>
<td>100mg 1g</td>
<td>L0217</td>
<td>Lamivudine</td>
<td>![Molecule Image]</td>
</tr>
<tr>
<td>A2232</td>
<td>20mg 100mg</td>
<td>A2232</td>
<td>Decitabine</td>
<td>![Molecule Image]</td>
</tr>
<tr>
<td>C2035</td>
<td>1g 5g</td>
<td>A2033</td>
<td>5-Azacytidine</td>
<td>![Molecule Image]</td>
</tr>
<tr>
<td>D4823</td>
<td>20mg 1g</td>
<td>G0367</td>
<td>Gemcitabine Hydrochloride</td>
<td>![Molecule Image]</td>
</tr>
<tr>
<td>C2035</td>
<td>1g 5g</td>
<td>F0635</td>
<td>Tegafur</td>
<td>![Molecule Image]</td>
</tr>
</tbody>
</table>
Please inquire for pricing and availability of listed products to our local sales representatives.
Nucleic Acid Synthesis Agents

Silylation converts insoluble nucleobases into lipophilic trimethylsilylated derivatives, which are readily soluble in organic solvents, permitting homogenous chemical reactions. The trimethylsilylated nucleobases react with protected sugars to afford nucleosides. The procedure is commonly referred to as the Hilbert-Johnson reaction modified by Vorbrüggen et al.

Phosphorylating and phosphorothioating agents, condensing agents and protecting agents for hydroxy and amino groups are of importance in the synthesis of DNA and RNA chains. Active research on chemical synthesis of DNA and RNA is being conducted, and a variety of synthetic methods using these agents are being developed.

The dicyclohexylcarbodiimide (DCC) method exemplified by the Khorana group, the phosphiteester method and phosphiteester method by the team of Letsinger and the phosphoramidite method by the Caruthers group are examples of the various synthetic methods. Recently, the phosphoramidite method has been used frequently in tandem with the penetration of DNA synthesizers, thus 2-cyanoethyl N,N,N',N'-tetraisopropyldiphosphorodiamidite has been the reagent of frequent choice for the phosphorylation due to its ease in handling and safety. 1,2,4-Triazole and 1H-tetrazole are also used for chemical conversion of uridines into cytidines.

Chemically synthesized DNA is becoming important as a primer for the PCR method, an antisense molecule, or an element of the DNA computer.
Please inquire for pricing and availability of listed products to our local sales representatives.
Please inquire for pricing and availability of listed products to our local sales representatives.
Please inquire for pricing and availability of listed products to our local sales representatives.
References

