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Abstract: The use of aryl(2,4,6-trimethoxyphenyl)iodonium salts as novel arylation reagents is discussed. 
The reaction mechanism of diaryliodonium salts and nucleophiles is outlined and the advantage of using 
unsymmetrical aryl(auxiliary)iodonium electrophiles is highlighted. Auxiliaries (dummy ligands) that are derived 
from 1,3,5-trimethoxybenzene are a specific focus and general synthetic approaches to and synthetic applications 
of these compounds are detailed.
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 Diaryliodonium salts, also referred to diaryl-λ3-iodanes, have been of interest to synthetic chemists since 
their discovery well over a century ago1 and the chemistry of hypervalent iodine has been extensively reviewed.2 
Their popularity is largely due to diverse and intriguing reactivity, and utility in the synthesis of both polymers 
and small molecules. With respect to the latter, diaryliodonium electrophiles are novel arylation reagents for 
a wide range of nucleophiles and the use of a transition metal catalyst is not required in many cases. This 
strategy is attractive because it parallels the simplicity of classic nucleophilic aromatic substitution (SNAr) but 
has the potential to achieve the broad scope of transition metal catalyzed reactions without the cost of designer 
ligands or the requirement to assay and remove trace metal impurities3 from target compounds. Consequently, 
unsymmetrical diaryliodonium salts may prove incredibly useful in the synthesis of pharmaceuticals, 
agrochemicals, or functional materials as aryl groups appear incessantly in these molecules. 
 The generally accepted mechanism for polar reactions of nucleophiles with diaryliodonium salt 
electrophiles under metal-free conditions is shown in Figure 1A with a symmetric salt and consists of two 
steps: ligand exchange and reductive coupling.2e,4 In the ligand exchange step a labile anion (typically triflate, 
tetrafluoroborate, tosylate, or halide) is displaced by a carbon or heteroatom nucleophile. In the reductive 
coupling step the resulting T-shaped λ3-iodane intermediate undergoes a pseudo-reductive elimination of the 
nucleophile ligand and one of the aryl ligands to form a new aryl-nucleophile bond and an aryl iodide. The 
geometry of the T-shaped intermediate is inconsequential when symmetrical diaryliodonium salts are used 
because reductive elimination of the nucleophile with either aryl group leads to identical products. While this 
scenario is more straightforward it results in significant aryl waste when diaryliodonium salts that cannot be 
synthesized from their constituent simple arenes are employed. A potentially less wasteful approach is to use an 
unsymmetrical diaryliodonium salt (Figure 1B). However, in this approach two geometrically distinct T-shaped 
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intermediates are in equilibrium which may lead to four different products (two different aryl-nucleophile 
products and two different aryl iodide by-products) upon reductive elimination (Figure 1B). The synthetic 
utility of this approach is only realized if one of the reductive elimination steps is slower than the other thereby 
rendering one of the aryl groups an auxiliary or dummy ligand (Figure 1B, red group). Consequently, studies to 
elucidate the factors that influence and promote (or inhibit) reductive elimination have been an important part of 
research on diaryliodonium salt chemistry.

 Two factors principally control the selectivity of reductive elimination from unsymmetrical T-shaped 
nucleophile-diaryl-λ3-iodane intermediates: electronic and steric effects of the aryl groups (Figure 2).5 Electronic 
effects have been noted since early reaction development with these reagents independently by Beringer,5a 

McEwen5b and Wiegand;5c steric effects have been noted in specific cases, most notably by Wiegand.5c Several 
decades of reactivity studies have been distilled down to the following general trends. Electronic effects favor 
reductive elimination of the nucleophile with the more electron deficient aryl group. Steric effects, in the form 
of ortho-substituents, may promote reductive elimination of the nucleophile with the more sterically congested 
aryl group and this has been termed the “ortho effect”.5c However, while electronic effects appear to be general 
across most nucleophiles, steric effects appear to be dependent on the nucleophile and this trend has led to 
an emergence of the “anti-ortho effect”.5g Moreover, when electronically disparate aryl groups are present on 
unsymmetrical diaryliodonium salt electronic effects are generally stronger than steric effects in promoting 
reductive elimination.6 Given the greater generality of the electronic effect on reductive elimination, this has 
been a focal point of studies to develop general auxiliaries for unsymmetrical aryl(auxiliary)iodonium salts.7 
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Figure 1．The mechanism of polar reactions of symmetrical or unsymmetrical diaryliodonium salts with nucleophiles

Figure 2．Representative examples of the in�uence of electronic and steric e�ects on reductive elimination
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Figure 3.  Synthetic approaches to aryl(TMP)iodonium salts

	2	 Synthetic	Approaches	to	Aryl(TMP)iodonium	Salts
 
 Aryl(2,4,6-trimethoxyphenyl)iodonium salts have emerged as promising reagents for chemoselective aryl 
transfer to nucleophiles because the trimethoxyphenyl (TMP) moiety is relatively more electron-rich than many 
other arenes and thus serves as a “dummy” ligand by exploiting the pronounced electronic effect on reductive 
elimination. Despite evidence for the utility of these reagents,5g their synthesis has remained relatively limited 
compared to other unsymmetrical diaryliodonium salts. Methods that have previously been employed to prepare 
aryl(TMP)iodonium salts are presented in Figure 3.5g,7c,d,8 Notably, the majority of these approaches have used 
an aryl-λ3-iodane (four of the six general approaches) which requires independent synthesis.5g,7d,8a,b,d,e,f  This 
feature, though reliable, reduces the generality of these methods and as a result between 1988 and 2015 only eight 
different aryl(TMP)iodonium salts were described in the chemical literature for the synthesis of small molecules.9 
A more general strategy involves the use of aryl iodides as these are widely commercially available. Toward this 
end, a one-pot process that incorporates an aryl-λ3-iodane formed in situ and reaction with trimethoxybenzene 
was described in pioneering work by Kita and co-workers in 2012.8c In this work phenyl(TMP)iodonium tosylate 
(85% yield) was the only iodonium salt incorporating a TMP auxiliary. Additionally, aryl iodides that contained 
strongly electron donating (methoxy) or electron withdrawing (nitro) substituents resulted in low yield under 
the standard reaction conditions with other auxiliaries; good yield with the nitro substituted aryl iodide could be 
achieved when HFIP was used as the solvent. 

 In 2015 we initiated a project to develop a one-pot synthesis of aryl(TMP)iodonium salts from readily 
available aryl iodides in an effort to substantially broaden the scope of aryl(TMP)iodonium salts and thereby 
stimulate the development of new reactions with these nascent arylation reagents.8g This work builds upon the 
previous work of Kita,8b,c Olofsson,10 and Pike.7c,d A key feature of our experimental set up was the removal of 
halogenated solvents and we found that acetonitrile was an excellent substituted for both stages (oxidation of 
iodine and introduction of the auxiliary). The optimization of all continuous reaction variables over two stages 
(temperature, time stage 1, time stage 2, stoichiometry, and solvent volume) was accomplished by Design 
of Experiment (DoE).11 These studies revealed that the reaction is fast and may be complete, from set-up to 
isolation, within one hour. Moreover, the reaction could be run under relatively concentrated conditions of 1 
M and with equal stoichiometry of all reactants. Overall, the reaction conditions provided a broad scope of 
substrates that could be synthesized in short reaction time and the isolated yields range from 67-96% with an 
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average of 87%. Strongly electron donating and electron withdrawing substituents on the aryl iodides are well 
tolerated as are potentially reactive functionality including benzyl bromide and free hydroxyl groups. These 
conditions were also compatible with azine heterocycles and more elaborate aryl moieties that underscore the 
use of an unsymmetrical diaryliodonium salt in subsequent arylation chemistry. The current scope, to the best of 
our knowledge, of all aryl(TMP)iodonium salts obtained from our work and all previous methods is presented in 
Figure 4.
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Figure 4.  Scope of aryl(TMP)iodonium salts
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 The counter anion is a useful handle for reactivity of diaryliodonium salts and the ability to access 
diaryliodonium salts with a range of counter anions is a critical component of reaction development. The vast 
majority of aryl(TMP)iodonium salts outlined in Figure 4 are the tosylate salts which is a consequence of the 
method of synthesis (Figure 3). During our development of the one-pot synthesis of aryl(TMP)iodonium salts 
we found that the tosylate anion could be readily exchanged to other anions under aqueous conditions (Figure 5). 
Bromide, iodide, trifluoroacetate, triflate, tetrafluoroborate, and hexafluorophosphate were all introduced in good 
yield; essentially quantitative replacement of the tosylate was observed.

 The use of aryl(TMP)iodonium salts as metal-free arylation reagents for small molecule synthesis continues 
to grow and is outlined in Figure 6.5g,7d,8g,e,12 The earliest reported case was the arylation of three malonate-type 
nucleophiles in 1999 (Figure 6, C-nucleophiles).12a For almost two decades these reagents received little attention 
and then, beginning in 2013, 14 more examples have emerged to include F-, N-, O-, and S-nucleophiles5g,7d,8e,g,12b 
with 7 of the examples reported in 2016.8g,12b The examples presented in Figure 6 highlight two exciting features 
of the aryl(TMP)iodonium reagents relative to other diaryliodonium salts: 1) aryl groups with electron-donating 
(e.g., t-Bu) and withdrawing (e.g., N3) substituents are chemoselectively transferred to nucleophiles in good 
yield, 2) elaborate aryl groups (e.g., 4ʹ-cyanobiphenyl) are chemoselectively transferred to nucleophiles. These 
features specifically indicate the potential utility and generality of these reagents for metal-free synthesis of small 
molecules.

	3	 Metal-free	Reactions	of	Aryl(TMP)iodonium	Salts	for	the	Synthesis	of	Small	Molecules
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 Diaryliodonium salts are novel reagents for metal-free arylation of carbon and heteroatom nucleophiles. The 
aryl(TMP)iodonium derivatives are uniquely promising toward this end as we and others have demonstrated their 
use with C-, F-, N-, O-, and S-nucleophiles. As these reagents become more readily available through general 
synthetic methods and commercial vendors their application in the synthesis of small molecules is anticipated to 
increase. The surge of use of these reagents in the past year is evidence for that and I am excited to watch with 
field grow in years to come. 
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	4	 Conclusions	and	Outlook
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