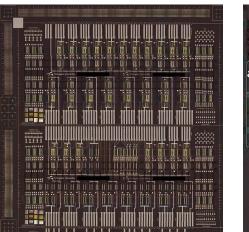
TCI Product Feature


High-Performance Small-Molecule Semiconductors for Solution-Processed and/or Vacuum-Evaporated n-Channel Organic Transistors: TU-1, TU-3

The organic semiconductors TU-1 and TU-3 have been developed by Tokito's group at the Research Center for Organic Electronics in Yamagata University. TU-1 and TU-3 can be used in vacuum-evaporated and/or solution-processed high-performance organic field-effect transistors (OFETs) with electron mobilities of over 1 cm²/Vs.¹⁻⁸) TU-1 and TU-3 (product number: T3922 and T3924) are evaluated through in-house device assessments to ensure the semiconductor performance of OFET devices for the reliable use of these materials.

Advantages of TU-1 and TU-3

- Electron mobility >1 cm²/Vs
- Solution-processable and/or vacuum-evaporable
- Applicable to complementary circuits^{2~8)}
- Quality specification by electron mobility of OFET devices

Example: Application to complementary circuits

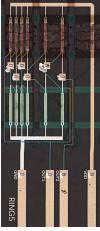


Figure 1. Photographs of complementary organic circuit using TU-3. (Pictures provided by Asst. Prof. Yasunori Takeda.)

Characteristics of TU-1 and TU-3

$$F_3$$
CO C_{12} H $_{25}$ C_{12} C_{12} H $_{25}$ C_{12} C_{12} H $_{25}$ C_{12} C_{1

Figure 2. Structures of TU-1 and TU-3

Table 1. Optoelectronic and thermogravimetric characteristics of TU-1 and TU-3

Compound	HOMO a)	LUMO a)	HOMO b)	LUMO b)	λ _{abs. peak} c)	Td d)
	(eV)	(eV)	(eV)	(eV)	(nm)	(°C)
TU-1	-5.44	-4.15	-5.58	-4.05	375, 707	422
TU-3	-5.56	-4.24	-	-4.12	385, 722	393

a) Calculated by DFT at Gaussian09 B3LYP/6-311++G(d,p), b) determined by cyclic voltammetry measurement, c) thin film, d) 5% weight loss.

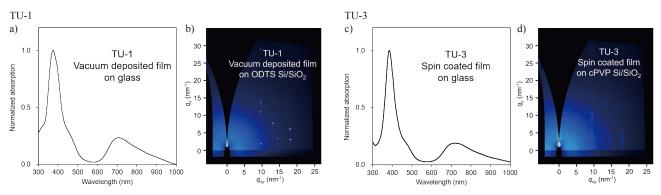


Figure 3. Thin-film UV-vis spectra (a, c) and 2D-GIXD patterns (b, d) of TU-1 and TU-3.

Table 2. Solubility of TU-1

Solvent	Temperature		Concentration			
	(°C)	0.03 wt%	0.05 wt%	0.1 wt%	0.3 wt%	
Toluene	100	0	0	0		
Mesitylene	130	0	0	0	0	
Chlorobenzene	130	0	0	0		
o-Dichlorobenzene	130	0	0			

Table 3. Solubility of TU-3

Solvent	Temperature	Concentration		
	(°C)	0.1 wt%	0.2 wt%	0.3 wt%
Xylene	100	0	0	0
Anisole	100	0	0	
Chloroform	60	0	0	
Chlorobenzene	80	0	0	0
o-Dichlorobenzene	60	0	0	0

Performance evaluation of TU-1 and TU-3

TU-1-based device (fabricated by vacuum deposition method)

- 1. ODTS SAM layer was formed on n⁺-Si / SiO₂ (200 nm) substrate.
- 2. Vacuum deposition of TU-1 (substrate temperature: 60 °C, deposition rate: 0.1 Å/sec, film thickness: 40 nm).
- 3. Vacuum deposition of Au electrode (thickness, 40 nm; channel length, 50 µm; channel width, 1.5 mm).
- 4. Annealing treatment at 150 °C for 30 min in nitrogen glove box.
- 5. Device performance evaluation in nitrogen glove box.

TU-3-based device (fabricated by spin coating method)

- 1. Cross-linked poly vinyl phenol insulator was formed on n⁺-Si / SiO₂ (200 nm) substrate.
- 2. TU-3 was dissolved in chloroform at concentration of 0.1wt%.
- 3. Spin-casting of TU-3 in nitrogen glove box (rotation speed: 1000 RPM, film thickness 20 nm).
- 4. Annealing treatment at 180 °C for 30 min in nitrogen glove box.
- 5. Vacuum deposition of Au electrode (thickness: 40 nm, channel length: 50 μm, channel width 1.5 mm).
- 6. Device performance evaluation in nitrogen glove box.

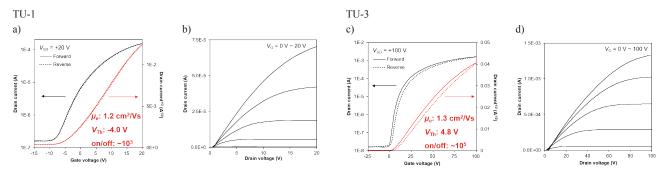


Figure 4. Transfer curves (a, c) and output curves (b, d) for TU-1- and TU-3-based OFETs.

Table 4. OFET characteristics of TU-1, TU-3-based devices

Solvent	Insulator	V _{SD} [V]	$\mu_{\rm ave.}$ [cm ² /Vs]	$\mu_{\rm max}$ [cm ² /Vs]	V_{Th} [V]	on/off
TT 1.1	SiO ₂	20	0.31 (0.01)	0.33	6.5 (0.2)	~106
TU-1 (vacuum deposition)	SiO_2	40	0.45 (0.01)	0.46	9.6 (0.1)	$\sim 10^7$
(vacuum deposition)	SiO ₂ / ODTS	20	0.88 (0.18)	1.18	-1.1 (2.6)	$\sim 10^3$
FTY . 2	SiO ₂	20	0.21 (0.03)	0.26	11.9 (0.4)	~10 ⁵
TU-3 (spin coating)	SiO ₂ / cPVP	20	0.51 (0.03)	0.55	5.0 (0.1)	$\sim \! 10^3$
(spin coating)	SiO ₂ / cPVP	100	1.03 (0.14)	1.25	5.3 (1.3)	$\sim \! 10^5$

The product specifications of TU-1 and TU-3 are the electron mobilities of >0.50 cm²/Vs in OFET devices.

References

- 1) M. Mamada, H. Shima, Y. Yoneda, T. Shimano, N. Yamada, K. Kakita, T. Machida, Y. Tanaka, S. Aotsuka, D. Kumaki, S. Tokito, *Chem. Mater.* **2015**, *27*, 141.
- 2) Y. Takeda, K. Hayasaka, R. Shiwaku, K. Yokosawa, T. Shiba, M. Mamada, D. Kumaki, K. Fukuda, S. Tokito, *Sci. Rep.* **2016**, *6*, 25714.
- 3) K. Hayasaka, H. Matsui, Y. Takeda, R. Shiwaku, Y. Tanaka, T. Shiba, D. Kumaki, S. Tokito, *Adv. Electron. Mater.* 2017, 3, 1700208.
- 4) Y. Takeda, Y. Yoshimura, R. Shiwaku, K. Hayasaka, T. Sekine, T. Okamoto, H. Matsui, D. Kumaki, Y. Katayama, S. Tokito, *Adv. Electron. Mater.* **2018**, *4*, 1700313.
- 5) H. Matsui, K. Hayasaka, Y. Takeda, R. Shiwaku, J. Kwon, S. Tokito, Sci. Rep. 2018, 8, 8980.
- 6) Y. Takeda, T. Sekine, R. Shiwaku, T. Murase, H. Matsui, D. Kumaki, S. Tokito, Appl. Sci. 2018, 8, 1331.
- 7) J. Kwon, Y. Takeda, R. Shiwaku, S. Tokito, K. Cho, S. Jung, Nat. Commun. 2019, 10, 54.
- 8) Y. Takeda, T. Sekine, Y.-F. Wang, T. Okamoto, H. Matsui, D. Kumaki, S. Tokito, ACS Appl. Electron. Mater. 2020, 2, 763.

250g

25mL 100mL 500mL H0089

O0168

TU-1 and TU-3 were developed by Tokito-Kumaki-Sekine laboratory in Yamagata University and commercialized with the cooperation of Future Ink Corporation.

The pictures and part of physical property data were provided by Tokito-Kumaki-Sekine laboratory in Yamagata University and Future Ink Corporation.

Products TU-1 TU-3	•	250mg 250mg		
High Quality p-Type Semiconductor Ph-BTBT-10	100mg	250mg	D5491	
Surface Treatment Regents Octadecyltrichlorosilane (ODTS) (>99.0%)		1g	T3815	

Organic Solvents			
Toluene		100mL	T0260
p-Xylene	25mL	500mL	X0014
Mesitylene	25mL	500mL	T0470
Anisole	25g	500g	A0492
Chloroform (stabilized with Ethanol)		100mL	C0175
Chlorobenzene		500g	C1948
o-Dichlorobenzene	25mL	500mL	D1116

n-Octyltrichlorosilane (OTS)

1,1,1,3,3,3-Hexamethyldisilazane (HMDS)