TCI 製品特集

蒸着型・塗布型デバイスに使用可能な 高移動度 n 型低分子有機半導体 TU-1, TU-3

山形大学有機エレクトロニクス研究センターの時任らのグループによって開発されたベンゾビスチアジアゾール誘導体「TU-1」「TU-3」は、電子移動度 $1 \text{ cm}^2/\text{V}$ sを超える高性能な有機電界効果トランジスタ (OFET)デバイスが蒸着法および塗布法で作製できます1-8)。当社では両材料の製品化にあたり、ロット毎に OFETデバイスを作製して電子移動度の機能性試験を行っています。

● n型半導体TU-1, TU-3の特徴

- •1 cm²/Vsを越える電子移動度
- •蒸着および塗布でのデバイス作製が可能
- •p型材料との組み合わせにより相補型回路への応用が可能2~8)
- •ロット毎の機能性試験による安定した品質

● 使用例:相補型回路への応用

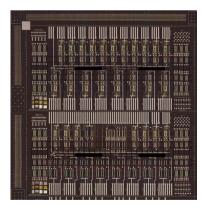


図1.TU-3を用いた相補型回路画像(山形大学 時任・熊木・関根研究室 竹田泰典助教よりご提供)

● TU-1, TU-3の特性評価

図2.TU-1,TU-3の構造式

表1. TU-1,TU-3の特性

Compound	HOMO a)	LUMO a)	HOMO b)	LUMO b)	λabs. peak c)	Td d)
	(eV)	(eV)	(eV)	(eV)	(nm)	(°C)
TU-1	-5.44	-4.15	-5.58	-4.05	375, 707	422
TU-3	-5.56	-4.24	_	-4.12	385, 722	393

- a) Calculated by DFT at Gaussian09 B3LYP/6-311++G(d,p), b) determined by cyclic voltammetry measurement,
- c) thin film, d) 5% weight loss.

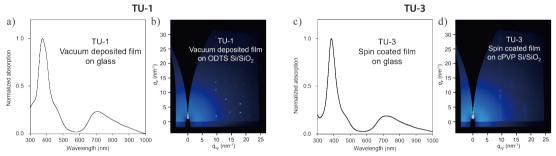


図3.TU-1およびTU-3薄膜のUV-visスペクトル(a, c)と2D-GIXDパターン(b, d)

表2.TU-1の溶解性

Solvent	Temperature		Concentration					
	(°C)	0.03 wt%	0.05 wt%	0.1 wt%	0.3 wt%			
Toluene	100	0	0	0				
Mesitylene	130	0	0	0	0			
Chlorobenzene	130	0	0	0				
o-Dichlorobenzene	130	0	0					

表3.TU-3の溶解性

Solvent	Temperature	Concentration					
	(°C)	0.1 wt%	0.2 wt%	0.3 wt%			
Xylene	100	0	0	0			
Anisole	100	0	0				
Chloroform	60	0	0				
Chlorobenzene	80	0	0	0			
o-Dichlorobenzene	60	0	0	0			

● OFETデバイスによる性能評価(社内測定)

TU-1を用いたOFET素子の作製

- 1. n⁺-Si / SiO₂ (200 nm) 基板にn-オクタデシルトリクロロシランを表面処理
- 2. TU-1の真空蒸着 (基板温度 60 ℃,蒸着レート 0.1 Å/sec, 膜厚 40 nm)
- 3. 金電極の真空蒸着 (膜厚 40 nm, チャネル長 50 μm, チャネル幅 1.5 mm)
- 4. 窒素雰囲気下.150 °Cで30分間アニーリング処理
- 5. 窒素雰囲気下で素子特性評価

TU-3を用いたOFET素子の作製

- 1. n+-Si / SiO₂ (200 nm) 基板に架橋ポリビニルフェノール絶縁層を成膜
- 2. TU-3の0.1wt%クロロホルム溶液を調整,加熱攪拌
- 3. TU-3のスピンコート成膜 (回転数1000 RPM, 膜厚 20 nm)
- 4. 窒素雰囲気下.180 °Cで30分間アニーリング処理
- 5. 金電極の真空蒸着 (膜厚 40 nm, チャネル長 50 μm, チャネル幅 1.5 mm)
- 6. 窒素雰囲気下で素子特性評価

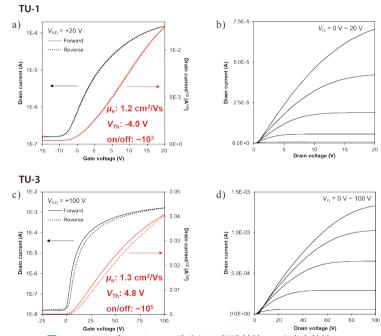


図4. TU-1, およびTU-3のOFETデバイスの伝達特性(a, c)と出力特性(b, d)

表4.TU-1,TU-3を用いたOFETデバイスの最適化

Solvent	Insulator	Vsd [V]	$\mu_{\text{ave.}} [\text{cm}^2/\text{Vs}]$	$\mu_{\text{max}} [\text{cm}^2/\text{Vs}]$	V _{Th} [V]	on/off
Tri 1	SiO2	20	0.31 (0.01)	0.33	6.5 (0.2)	~10 ⁶
TU-1 (vacuum deposition)	SiO2	40	0.45 (0.01)	0.46	9.6 (0.1)	$\sim \! 10^{7}$
(vacuum deposition)	SiO ₂ / ODTS	20	0.88 (0.18)	1.18	-1.1 (2.6)	$\sim 10^{3}$
TELL 2	SiO ₂	20	0.21 (0.03)	0.26	11.9 (0.4)	~10 ⁵
TU-3	SiO ₂ / cPVP	20	0.51 (0.03)	0.55	5.0 (0.1)	$\sim 10^{3}$
(spin coating)	SiO ₂ / cPVP	100	1.03 (0.14)	1.25	5.3 (1.3)	$\sim 10^{5}$

両製品は電子移動度 0.50 cm²/Vs以上を規格に設定しています。

文 献

- 1) M. Mamada, H. Shima, Y. Yoneda, T. Shimano, N. Yamada, K. Kakita, T. Machida, Y. Tanaka, S. Aotsuka, D. Kumaki, S. Tokito, *Chem. Mater.* **2015**, *27*, 141.
- 2) Y. Takeda, K. Hayasaka, R. Shiwaku, K. Yokosawa, T. Shiba, M. Mamada, D. Kumaki, K. Fukuda, S. Tokito, Sci. Rep. 2016, 6, 25714.
- 3) K. Hayasaka, H. Matsui, Y. Takeda, R. Shiwaku, Y. Tanaka, T. Shiba, D. Kumaki, S. Tokito, *Adv. Electron. Mater.* **2017**, *3*, 1700208.
- 4) Y. Takeda, Y. Yoshimura, R. Shiwaku, K. Hayasaka, T. Sekine, T. Okamoto, H. Matsui, D. Kumaki, Y. Katayama, S. Tokito, *Adv. Electron. Mater.* **2018**, *4*, 1700313.
- 5) H. Matsui, K. Hayasaka, Y. Takeda, R. Shiwaku, J. Kwon, S. Tokito, Sci. Rep. 2018, 8, 8980.
- 6) Y. Takeda, T. Sekine, R. Shiwaku, T. Murase, H. Matsui, D. Kumaki, S. Tokito, Appl. Sci. 2018, 8, 1331.
- 7) J. Kwon, Y. Takeda, R. Shiwaku, S. Tokito, K. Cho, S. Jung, Nat. Commun. 2019, 10, 54.
- 8) Y. Takeda, T. Sekine, Y.-F. Wang, T. Okamoto, H. Matsui, D. Kumaki, S. Tokito, *ACS Appl. Electron. Mater.* **2020**, *2*, 763.

本品は、山形大学 時任・熊木・関根研究室で開発され、株式会社フューチャーインクとのタイアップにより製品 化されました。

掲載した画像,およびデータの一部については山形大学 時任・熊木・関根研究室,ならびに株式会社フューチャーインクよりご提供いただきました。

紹介した製品 TU-1 TU-3		U	32,500円 35,500円	250mg 68,500円 250mg 74,600円	T3922 T3924
高品質p型有機半導体 Ph-BTBT-10		100mg	32,500円	250mg 68,500円	D5491
表面処理剤 Octadecyltrichlorosilane (ODTS) (>99.0%) <i>n</i> -Octyltrichlorosilane (OTS) 1,1,1,3,3,3-Hexamethyldisilazane (HMDS)	25mL 2,000円	25g 100mL	4,200円 4,500円	1g 19,800円 250g 19,800円 500mL 10,800円	T3815 O0168 H0089
有機溶媒 Toluene p-Xylene Mesitylene Anisole Chloroform (stabilized with Ethanol) Chlorobenzene o-Dichlorobenzene		25mL 25mL 25g 25mL	1,600円 1,600円 1,600円	100mL 3,800円 500mL 2,100円 500mL 4,500円 500g 3,500円 100mL 3,800円 500g 1,600円 500mL 2,900円	T0260 X0014 T0470 A0492 C0175 C1948 D1116