Hypervalent Iodine Compounds

Please inquire for pricing and availability of listed products to our local sales representatives.
Hypervalent Iodine Compounds

As Japan is not blessed with abundant natural resources, it is dependent on the importation of the majority of its raw materials from overseas. However, Japan can be proud of its production of iodine, where it is a leading world manufacturer. The present situation in Japan is that the produced and exported iodine products are low value-added products, and thus Japan still relies on the United States and Europe for importation of high value-added iodine products such as X-ray contrast medium or photosensitive agent for photographic film.

Iodine is atomic number 53, in the 5th period, Group VIIa, halogens of the periodic table. Iodine is a large-sized halogen element, easily polarizable, and low in electronegativity. It forms hypervalent iodine compound beyond the octet rule by readily extending its valence. For example, a hypervalent iodine compound with three ligands is a 10-I-3 type compound as shown in the figure. The central iodine atom forms a plane with two lone pairs and one s-bond, and furthermore, this iodine atom coordinates two ligands with larger electronegativity in an apical position orthogonal to the plane resulting in the formation of a linear three center-four electron bond. The I-L bond in the apical position is longer than the covalent bond. For example, the I-O bond lengths in (diacetoxyiodo)benzene (PhI(OAc)₂), [I0330] are longer than the sum of their covalent bond radii (1.99Å) and these bond lengths have a range of 2.15 - 2.16Å.

The stability and reactivity of hypervalent iodine compounds exhibit a greater dependence on the character of hypervalent bonds in the apical position. The hypervalent bonds in the apical position are easily cleaved, and the cleavage causes trivalent iodine with 10 electrons to be reduced to monovalent iodine of a more stable octet structure. For this reason it exhibits good elimination and oxidation rates and finds application in organic syntheses.

Oxidizing Agents

Ochiai and co-workers have also found that the ligand exchange of 1-hydroxy-1,2-benziodoxol-3-one with tert-butyl hydroperoxide affords 1-(tert-butylperoxy)-1,2-benziodoxoles-3-one [B2121] in the presence of Lewis acid. B2121 is an interesting compound with a specific structure since it contains a tert-butylperoxy group and a trivalent iodine atom in the same molecule, both of which have oxidizing properties. Ochiai and co-workers are investigating the efficacies of B2121 as an oxidizing agent in further studies.

In one example of its useful property, B2121 selectively oxidizes the benzylic methylene group of benzy1 ether, and produces benzoic acid esters. The chemoselectivity of this reaction is high, and chemoselective oxidation at the benzylic site proceeds preferentially even in the presence of methoxymethyl group, silyl group, acetyl group, or tetrahydropyranyl group, and affords corresponding esters. Generally, the benzy1 group is frequently used as a protecting group for alcohols. On the other hand, since esters are readily hydrolyzed to alcohols, B2121 is a useful oxidative deprotecting reagent for benzyl group. The allyl group is also used as a protecting group for alcohols, B2121 can afford acrylic acid esters selectively from allyl ethers. Furthermore, B2121 can also be applied to the oxidation of sulfides, amines and amides, and it is expected to find use in many other field.

ABBX [A2678] is a highly active trivalent iodine compound, developed by Togo et al. A2678 oxidizes benzylic alcohols and aliphatic secondary alcohols to the corresponding aldehydes and ketones in good yields from simple extraction of the reaction mixture. 5-Bromo-2-iodobenzoic acid, formed as a co-product of this reaction, can be recovered by acidification of the aqueous layer.

ABBX [A2678] is a highly active trivalent iodine compound, developed by Togo et al. A2678 oxidizes benzylic alcohols and aliphatic secondary alcohols to the corresponding aldehydes and ketones in good yields from simple extraction of the reaction mixture. 5-Bromo-2-iodobenzoic acid, formed as a co-product of this reaction, can be recovered by acidification of the aqueous layer.

<table>
<thead>
<tr>
<th>Alcohols</th>
<th>A2678 (2.0 eq.) or I0330 (2.0 eq.)</th>
<th>Aldehydes or Ketones</th>
<th>Yield [Purity]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₂OH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TBDPSO</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A2678: 90% [90%] I0330 : 32%
A2678: 74% [73%]
(TBDPSO = tert-Butyldiphenylysiloxy)
The most common of the trivalent iodine compounds, (diacetoxyiodo)benzene [P0330] has been supported on a polymer. For example, Togo and co-workers have demonstrated several oxidation reactions using poly[4-(diacetoxyiodo)-styrene] [P1415].

\[
\text{Ph} \begin{array}{c}
\text{O} \\
\text{C} \\
\text{C} \\
\text{CF}_3 \\
\text{O} \\
\text{OEt} \\
\text{CH}_3 \\
\text{OEt} \\
\text{OEt}
\end{array}
\]

P1415 can selectively oxidize primary alcohols to aldehydes, and secondary alcohols to ketones under mild conditions in the presence of TEMPO. After the reaction, the by-product, poly(4-iodostyrene), can be recovered by filtration, re-oxidized with peracetic acid, and reused. Therefore P1415 is expected to be used as environmentally-friendly oxidation reagent in the future.

Fluorinating Agents

1-Fluoro-3,3-dimethyl-1,2-benziodoxole [F0957] is an air- and moisture-stable compound developed by Stuart et al. F0957 is used as an electrophilic fluorinating agent for a \(\alpha\)-monofluorination of \(\beta\)-ketoesters in the presence of triethylamine trihydrofluoride. In this reaction, a difluorination reaction occurs by increasing the amounts of F0957 with heating at 60 °C. On the other hand, Szabó et al. have reported a difluorination reaction of F0957 with styrene derivatives. They suggest that the reaction proceeds through the formation of a phenonium ion intermediate based on a deuterium-isotope-labelling experiment.

Monofluorination of \(\beta\)-ketoesters

\[
\begin{align*}
\text{Ph} \begin{array}{c}
\text{O} \\
\text{O} \\
\text{OEt}
\end{array} & \xrightarrow{\text{[F0957]}} \text{Ph} \begin{array}{c}
\text{O} \\
\text{F} \\
\text{OEt}
\end{array} \quad \text{Et}_{3}N-3HF (2.7 equiv.) \\
\text{CH}_2Cl_2 & \quad 40 °C, 24 h
\end{align*}
\]

\[
\begin{align*}
\text{a} & \quad \text{Ph} \begin{array}{c}
\text{O} \\
\text{F} \\
\text{OEt}
\end{array} \quad \text{b} \quad \text{Ph} \begin{array}{c}
\text{O} \\
\text{F} \\
\text{OEt}
\end{array} \\
\text{a} : \text{b} & = 89 : 6 (^1H NMR) \quad \text{Y. 63% (isolated)}
\end{align*}
\]

Difluorination of styrene derivatives

\[
\begin{align*}
\text{R} \begin{array}{c}
\text{O}
\end{array} & \xrightarrow{\text{F0957} \quad \text{AgBF}_4 (1 \text{ equiv.)}} \text{R} \begin{array}{c}
\text{O}
\end{array} \quad \text{CHCl}_3, 40 °C \\
& \quad \text{Y. 54 -- 88%}
\end{align*}
\]

Trifluoromethylating Agents

Togni Reagent [T2624] is an electrophilic trifluoromethylating agent developed by Togni and co-workers, which reacts with \(\beta\)-keto esters and \(\alpha\)-nitro esters to introduce a trifluoromethyl group on their \(\alpha\)-carbons. T2624 also reacts with thiol- and primary- and secondary phosphines to generate trifluoromethyl sulfides and trifluoromethyl substituted phosphines respectively. T2624 can be applicable to various substrates.

\[
\begin{align*}
\text{R} \begin{array}{c}
\text{O}
\end{array} & \xrightarrow{\text{T2624} (1.5 \text{ eq.})} \text{R} \begin{array}{c}
\text{CF}_3 \\
\text{O}
\end{array} \quad \text{K}_2\text{CO}_3 (3.0 \text{ eq.}) \quad \text{Bu}_4\text{NI (10 mol%)} \quad \text{in CH}_3\text{CN, rt}
\end{align*}
\]

Togni Reagent II [T3014] is also an electrophilic trifluoromethylating agent, which was developed by Togni et al. T3014 enables it to trifluoromethylate various substrates, as well as Togni Reagent. In particular, it has been reported that the reaction of T3014 and olefins affords the corresponding allylic trifluoromethylated compounds.\(^\star\)

\[\text{T3014 contains diatomaceous earth because of reducing explosibility.}\]

Trifluoromethylthiolating Agents

Shibata et al. have reported a electrophilic trifluoromethylthiolating reaction using Shibata Reagent II [P2143]. P2143 is electrophilic and reacts well with various nucleophiles to afford the CF₃S⁻ substituted products. The reaction process is assumed that a reactive trifluoromethanesulfonyl group by carbene-mediated reduction catalyzed by a copper (I) salt in situ.

\[
\begin{align*}
\text{R} \begin{array}{c}
\text{O}
\end{array} & \xrightarrow{\text{[T3014] (1.5 eq.)}} \text{R} \begin{array}{c}
\text{CF}_3 \\
\text{O}
\end{array} \quad \text{CuCl (cat.) in MeOH}
\end{align*}
\]

\[\quad \text{Nucleophile-H} \quad \text{Nucleophile-SCF}_3 \]

\[\text{Enamines} \quad \text{Indoles} \quad \text{p-Keto esters}\]
Hypervalent Iodine Compounds

● Ethynylation Reagents

Ochiai and co-workers have developed alkynyliodonium tetrafluoroborate [E0467] prepared from alkynylsilanes and iodosobenzene in the presence of BF$_3$ and they reported its efficacy as electrophilic ethynylation reagents.\(^1\)

When E0467 was reacted with enolates, alkylidene carbene was generated as an intermediate, and subsequently, an ethynylated product was obtained via 1,2-hydrogen rearrangement of the α-hydrogen. This reaction proceeded under room temperature, and afforded ethynylated products in high yields. As for other electrophilic ethynylation reagents, ethynyl lead triacetate has been exploited, which is prepared from ethynyl(trimethyl)stannane and lead tetraacetate. However, preparation of this reagent requires the use of heavy metal compounds, which make it an unattractive procedure. The ethynylation procedure using this reagent requires careful control of the reaction conditions. The ethynylation method using E0467 has been at the center of attention in many fields, as this method does not use highly toxic heavy metal compounds, and the reaction proceeds under mild conditions.

![E0467]

\[\text{PhI} + \text{R} \text{CHO} \rightarrow \text{PhCH} = \text{CR} \text{CO} \text{R} \]

● Benzynie Precursors

Kitamura and co-workers have reported mild benzynie generation method using TMS-phenyliodonium compound [P1620].\(^2\) According to the report, benzynie can be efficiently generated by treating P1620 with Bu$_4$NF. P1620 is the excellent benzynie precursor which needs neither high temperature condition nor strong basic treatment in order to generate benzynie.

![P1620]

\[\text{PhI}^{+} \text{OTf}^{-} + \text{R} \text{SiMe}_{3} \rightarrow \text{Ph} \text{C}_{6} \text{H}_{4} \text{CH} = \text{CR} \text{SiMe}_{3} \]

References

The list of products

We introduce our products according to their applications.

Oxidizing Agents .. 6
Iodinating Agents .. 6
Fluorinating Agents 6
Trifluoromethylating Agents 6
Perfluoroalkylating Agents 6
Trifluoromethylthiolating Agents 7
Ethynylation Reagents 7
Arylation Reagents 7
Mesyloxylation Reagents 7
Tosyloxylation Reagents 8
Condensation Reagents 8
Benzyne Precursors 8
Photo-Cationic Polymerization Initiators 8
Hypervalent Iodine Compounds

Oxidizing Agents

- **Koser Reagent**
 - CAS RN: 27126-76-7
 - For: 1g, 5g, 25g

- **IBA**
 - CAS RN: 304-91-6
 - For: 1g, 10g, 25g

- **IBX**
 - CAS RN: 61717-82-6
 - For: 5g, 25g

- **Koser Reagent**
 - CAS RN: 27126-76-7
 - For: 10g, 25g, 250g

- **PIDA**
 - CAS RN: 3240-34-4
 - For: 1g, 5g, 25g

- **PSDIB**
 - CAS RN: 36290-94-5
 - For: 1g, 5g, 25g

- **IBX**
 - CAS RN: 61717-82-6
 - For: 5g, 25g, 100g

Iodinating Agents

- **Barluenga’s Reagent**
 - CAS RN: 15656-28-7
 - For: 1g

- **Bis(2,4,6-trimethylpyridine)-iodonium Hexafluorophosphate**
 - CAS RN: 113119-46-3
 - For: 1g, 5g

Fluorinating Agents

- **1-Fluoro-3,3-dimethyl-1,2-benziodoxole**
 - CAS RN: 1391728-13-4
 - For: 1g

Perfluoroalkylating Agents

- **(Perfluoropropyl)phenyliodonium Trifluoromethanesulfonate**
 - CAS RN: 77758-79-3
 - For: 5g, 25g

- **(Perfluoro-n-octyl)phenyliodonium Trifluoromethanesulfonate**
 - CAS RN: 77758-89-5
 - For: 1g
Hypervalent Iodine Compounds

Trifluoromethylthiolating Agents

Ethynylation Reagents

Arylation Reagents

Mesyloxylation Reagents

Please inquire for pricing and availability of listed products to our local sales representatives.
Hypervalent Iodine Compounds

Tosyloxilation Reagents

<table>
<thead>
<tr>
<th>Chemical Name</th>
<th>CAS RN</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1015 Koser Reagent</td>
<td>1015-29-7</td>
<td>5g 25g</td>
</tr>
<tr>
<td>I0865 Tosyloxylation Reagents</td>
<td></td>
<td>1g</td>
</tr>
</tbody>
</table>

Condensation Reagents

<table>
<thead>
<tr>
<th>Chemical Name</th>
<th>CAS RN</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1620 Iodosodilactone</td>
<td>1620-50-5</td>
<td>1g 5g</td>
</tr>
<tr>
<td>D2503 Phenyl(2-trimethylsilyl)phenyl iodonium Triflate</td>
<td>2503-45-3</td>
<td>5g 25g</td>
</tr>
</tbody>
</table>

Benzyne Precursors

<table>
<thead>
<tr>
<th>Chemical Name</th>
<th>CAS RN</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>D2356 Diphenyliodonium Chloride</td>
<td>2356-42-6</td>
<td>5g 25g</td>
</tr>
<tr>
<td>D2372 Diphenyliodonium Bromide</td>
<td>2372-43-5</td>
<td>5g</td>
</tr>
<tr>
<td>D2373 Diphenyliodonium Iodide</td>
<td>2373-44-0</td>
<td>5g</td>
</tr>
</tbody>
</table>

Photo-Cationic Polymerization Initiators

<table>
<thead>
<tr>
<th>Chemical Name</th>
<th>CAS RN</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2357 Bis(4-tert-butylphenyl)iodonium Hexafluorophosphate</td>
<td>2357-25-6</td>
<td>5g 25g</td>
</tr>
<tr>
<td>B2253 (4-Nitrophenyl)(phenyl)iodonium Triflate</td>
<td>2253-48-5</td>
<td>1g 5g 25g</td>
</tr>
<tr>
<td>B2243 Phenyl[2-(trimethylsilyl)phenyl]iodonium Triflate</td>
<td>2243-50-7</td>
<td>1g</td>
</tr>
<tr>
<td>B2248 Bis(4-fluorophenyl)iodonium Triflate</td>
<td>2248-51-8</td>
<td>1g</td>
</tr>
<tr>
<td>B2380 Bis[4-(tert-butyl)phenyl]iodonium Tetra(perfluoro-tert-butoxy)aluminate</td>
<td>2380-25-6</td>
<td>1g 5g</td>
</tr>
</tbody>
</table>

Ordering and Customer Service

TCI EUROPE N.V.
Tel: +32 (0)13 755 000
Fax: +32 (0)13 755 001
E-mail: Sales-EU@TCIchemicals.com

TCI Deutschland GmbH
Tel: +49 (0)6196 64053-00
Fax: +49 (0)6196 64053-01
E-mail: Sales-DE@TCIchemicals.com

TCI Chemicals (India) Pvt. Ltd.
Tel: 1800 425 7889 / 044-2262 0909
Fax: 044-2262 8902
E-mail: Sales-IN@TCIchemicals.com

Tokyo Chemical Industry UK Ltd.
Tel: +44 (0)1865 784560
Fax: +44 (0)1865 784561
E-mail: Sales-UK@TCIchemicals.com

TOKYO CHEMICAL INDUSTRY CO., LTD.
Tel: +81 (0)3-5640-8878
Fax: +81 (0)3-5640-8802
E-mail: globalbusiness@TCIchemicals.com

www.TCIchemicals.com