Photolabile Protecting Groups for "Caged" Bioactive Molecules

In the context of protecting groups, "caged" compounds refer to protecting groups bonded to bioactive molecules that can be readily removed in an orthogonal manner. The "caging" of bioactive molecule with photolabile protecting groups in particular have proven to be a particularly useful tool in biochemical research. Caged compounds in which bioactive substances are inactivated with photolabile protecting groups\(^1\) and can be activated by UV or visible light photoirradiation. Research towards controlling the topical expression of biomolecule activity using caged compounds has been recently reported and continues to be heavily investigated. To date, several classes of caged biomolecule have been synthesized and reported, including: nucleotides,\(^1\) amino acids,\(^2\) biotin,\(^3\) and sugars.\(^4\)

![Chemical Structures](attachment:image1.png)

1. 4'-5'-Dimethoxy-2'-nitroacetophenone
2. 1-(2-Nitrophenyl)ethanol
3. 4-(Bromomethyl)-7-(diethylamino)coumarin
4. 6-Bromo-7-hydroxy-4-(hydroxymethyl)coumarin
5. 7-(Diethylamino)-4-(hydroxymethyl)coumarin
6. 1-(6-Nitro-1,3-benzodioxol-5-yl)ethanol
7. 2-(2-Nitrophenyl)-propan-1-ol
8. 4',5'-Dimethoxy-2'-nitroacetophenone

New [(N1133)](attachment:link1.png)
Photolabile Protecting Groups for "Caged" Bioactive Molecules

Applications

Photoinducing Endosomal Fusion by a Caged Phosphatidylinositol 3-Phosphate

```
enhanced ethylene
```

```
D4970
```

Plasma membrane

```
Endogenous esterase
```

```
Fusion
```

```
Early endosome
```

```
5 min
```

```
2.5 fold increase
```


Application toward cells Using a Caged Biotin-conjugate

```
Caged biotin
```


For further information please refer to our website at www.TCIchemicals.com.