text.skipToContent text.skipToNavigation

Maximum quantity allowed is 999

请选择数量

表观遗传学研究用生物活性小分子

Epigenetics Research Reagents

The term "epigenetics" was first proposed by Conrad H. Waddington in 1942.1) Epigenetics is the study of acquired chemical modifications of DNA and nuclear histone proteins that do not alter the DNA sequence but regulate gene expression and other processes that occur during development, cell differentiation, and carcinogenesis.2) Among others, DNA methylation and histone modification are two well-researched physiological mechanisms of epigenetic change.3,4)


Mechanism of DNA methylation

Mechanism of DNA methylation

Cytosines in CpG dinucleotides can be methylated to form 5-methylcytosine. In mammals, methylating the cytosine within a gene can change its expression, a mechanism that is part of a larger field of science studying gene regulation called epigenetics. The enzymes that add methyl groups are called DNA methyltransferases and those that remove methyl groups are called DNA demethylases. Three types of each group have been identified in mammals.


Mechanism of Histone deacetylase (HDAC)

Mechanism of Histone deacetylase (HDAC)

Genomic DNA is packaged in the nucleus as nucleosomes, each individual nucleosome consisting of a segment of DNA is wrapped around proteins called histones. Histone deacetylase (HDAC) is an important enzyme regulating gene expression by changing nucleosome structure. Numerous histone acetylases and deacetylases have been identified to date. HDAC is also thought to have a regulatory role in the cell cycle and cell differentiation, and the failure of this regulation has been associated with carcinogenesis. In a mouse model, SAHA (TCI Product No. H1388) inhibits HDAC activity by inducing the differentiation and/or apoptosis of transformed cells in vitro, thereby inhibiting tumor growth.


Inhibitor of Lysine-specific Demethylase (LSD)

Inhibitor of Lysine-specific Demethylase (LSD)

LSD (lysine specific demethylase) is an enzyme that demethylates methylated lysine in histone proteins using FAD (flavin adenine dinucleotide) as coenzyme. It is known that these two isoforms (LSD1 and LSD2) epigenetically regulate gene expression. Aberrant expression of LSD1 is implicated in the maintenance of cancer stem cells and is expected to be a therapeutic target for cancer.5,6) LSD2 interacts with nucleosomes differently from LSD1 and plays a different biological role.7)
TCI offers LSD Inhibitor S1024 (TCI Product No. B6490) and LSD Inhibitor S1025 (TCI Product No. B6491).8)


References

=======================>>[Click Here for References]<<=======================

会话状态
当前会话将在10分钟后超时,并返回主页。请点击按钮继续浏览。分钟后超时,并返回主页。请点击按钮继续浏览。

您的会话已超时,将返回至主页。