新客好礼,乐享不停 | 盲盒好礼,精彩继续 | 轻松扫码查看产品文档 | TCIMAIL No.199 已上新 | TCI试剂——品质可靠,值得信赖
订购方法?联系方式:021-67121386 / Sales-CN@TCIchemicals.com
Maximum quantity allowed is 999
请选择数量
类器官培养
Organoids are in-vitro 3D cell aggregates derived from stem cells which are not only capable of self-organization and long term self-renewal, but which also exhibit similar function to the tissues from which they were derived.1-4) This is achieved through the use of physical and biochemical cues which are able to recapitulate cells’ natural environment within living tissue. As such, organoids are able to overcome many of the limitations of existing culture models (2D monolayers, 3D aggregates (such as spheroids), animal models, etc.). Current applications for organoid culture systems include those in:
- Developmental Biology5-9)
- Disease Pathology10-22)
- Drug Toxicity / Efficacy Testing23-26)
- Regenerative Medicine27-30)
- Personalized Medicine15,18,26,31,32)
Organoids can be generated by imbedding either primary tissue (human adult stem cells (hAdSCs)) or pluripotent stem cells (induced pluripotent stem cells (iPSCs) or embryonic stem cells (ESCs)) in the appropriate matrix components and applying appropriate signaling molecules / proteins.3)
Special Grade Reagents for Cell Culture
Our "Optimized for Cell Culture" reagent series has passed tests for the absence of endotoxins and mycoplasma, for your peace of mind when handling especially valuable samples, such as organoids and iPSCs – perfect for use in disease modeling and regenerative medicine research.
‡ General testing for other bacteria has not been conducted. As such, please filter sterilize etc. before use.
- Product Name
- Product No.
- A 83-01 [Optimized for Cell Culture]
- A3679
- Bortezomib [Optimized for Cell Culture]
- B6775
- CHIR 99021 [Optimized for Cell Culture]
- C4010
- DAPT [Optimized for Cell Culture]
- D6295
- FR 180204 [Optimized for Cell Culture]
- F1381
- GW-5074 [Optimized for Cell Culture]
- G0649
- Honokiol [Optimized for Cell Culture]
- H1893
- Insulin solution (4mg/mL) [Optimized for Cell Culture]
- I1257
- IWR-1 [Optimized for Cell Culture]
- I1264
- MG-132 [Optimized for Cell Culture]
- M3810
- Minoxidil [Optimized for Cell Culture]
- M3836
- Nicotinamide [Optimized for Cell Culture]
- N1319
- PD 98059 [Optimized for Cell Culture]
- P3159
- PD 169316 [Optimized for Cell Culture]
- P3161
- PD 184352 [Optimized for Cell Culture]
- P3157
- Penicillin-Streptomycin Solution (100×10mM in Citrate Buffer) [Optimized for Cell Culture]
- P3368
- rhEGF (Human, Recombinant) [Optimized for Cell Culture] (100µg/vial)
- R0262
- rhFGF2 (Human, Recombinant) [Optimized for Cell Culture] (50µg/vial)
- R0263
- SB 203580 [Optimized for Cell Culture]
- B6670
- SB 431542 [Optimized for Cell Culture]
- B6661
- SL 327 [Optimized for Cell Culture]
- L0470
- Sorafenib [Optimized for Cell Culture]
- O0672
- SP 600125 [Optimized for Cell Culture]
- P3160
- SU 3327 [Optimized for Cell Culture]
- U0173
Organoid Culture Medium Components
Some examples of organoid culture conditions can be found below (matrix components, base culture medium, and chemically defined supplements not shown).
=======================>>[Click here to view references]<<=======================
- Tissue Type
- Origin
- Culture Conditions
- Reference
- Intestine
- hAdSCs
- A83-01 [A3324], Nicotinamide [N0078], N-Acetylcysteine [A0905], Y-27623, SB202190, EGF, Rspondin1, Noggin, Wnt-3a
- 33
- hPSCs
- EGF, Rspondin1, FGF-4, Noggin, Wnt-3a, Activin A
- 34
- Colon
- hAdSCs
- A83-01 [A3324], Nicotinamide [N0078], N-Acetylcysteine [A0905], Y-27623, SB202190, EGF, Rspondin1, Noggin, Wnt-3a
- 33
- Stomach
- hAdSCs
- A83-01 [A3324], Nicotinamide [N0078], N-Acetylcysteine [A0905], Y-27623, EGF, Rspondin, FGF-10, Gastrin, Noggin, Wnt-3a
- 11
- hPSCs
- CHIR 99021 [C2943], Y-27623, Retinoic Acid [R0064], EGF, FGF-4, BMP-4, Noggin, Activin A, Wnt-3a
- 12
- Lung
- hAdSCs
- A83-01 [A3324], Nicotinamide [N0078], Y-27632, SB202190, Rspondin1, FGF-7, FGF-10, Noggin
- 35
- hPSCs
- Differentiation:
SB431542 [B4003], SANT-2, SU-5402, bFGF, Noggin, SHH, SAG, Activin A
Organoid Culture:
CHIR 99021 [C2943], SB431542, FGF-4, Noggin - 36
- Brain
- hPSCs
- Y-27632, Heparin [H0393], 2-Mercaptoethanol [M0058], bFGF, Insulin
- 37
- Liver
- hAdSCs
- Organoid Culture:
Y-27632, A83-01 [A3324], Nicotinamide [N0078], N-Acetylcysteine [A0905], Forskolin [F0855], EGF, Rspondin1, FGF-10, Gastrin, Noggin, Wnt-3a, HGF
Hepatocyte Differentiation:
A83-01 [A3324], DAPT [D4257], Dexamethasone [D1961], EGF, FGF-19, BMP-7, Gastrin, HGF - 17
- hPCSs
- bFGF, BMP-4, Activin A, HGF, Oncostatin M
- 38
- Pancreas
- hAdSCs
- A83-01 [A3324], Nicotinamide [N0078], N-Acetylcysteine [A0905], EGF, Rspondin1, FGF-10, Gastrin, Noggin, Wnt-3a
- 20
- Kidney
- hPCs
- Differentiation:
CHIR 99021 [C2943], 2-Mercaptoethanol [M0058], Heparin [H0393], Retinoic Acid [R0064], 1-Thioglycerol [T0905], bFGF, FGF-9, BMP-2, BMP-4, Insulin, Activin A, Holo-transferrin
Organoid Culture:
CHIR 99021 [C2943], Heparin [H0393], FGF-9, HGF, GDNF - 39, 40
- Prostate
- hAdSCs
- Y-27623, A83-01 [A3324], Nicotinamide [N0078], N-Acetylcysteine [A0905], SB202190, Prostaglandin E2 [P1884], Testosterone [T0027], EGF, Rspondin1, FGF-10, bFGF, Noggin
- 41
- hPCs
- Prostate Differentiation:
FGF-10, Activin A, Wnt-10b
Organoid Culture:
Retinoic Acid [R0064], Testosterone [T0027], EGF, Rspondin1, Noggin - 42
References
=======================>>[Click here to view references]<<=======================
- 1) Y. Sasai, Nature 2013, 493, 318.

- 2) M. A. Lancaster, J. A. Knoblich, Science 2014, 345.

- 3) J. Kim, B. K. Koo, J. A. Knoblich, Nat. Rev. Mol. Cell Biol. 2020, 21, 571.

- 4) S. Gunti, A. T. K. Hoke, K. P. Vu, N. R. London Jr., Cancers 2021, 13, 874.

- 5) H. Clevers, Cell 2016, 165, 1586.

- 6) M. Huch, B-K. Koo, Development 2015, 142, 3113.

- 7) P. H. Dedhia, N. Bertaux-Skeirik, Y. Zavros, J. R. Spence, Gastroenterology 2016, 150, 1098.

- 8) M. Eiraku, N. Takata, H. Ishibashi, M. Kawada, E. Sakakura, et al., Nature 2011, 472, 51.

- 9) J. G. Camp, K. Sekine, T. Gerber, H. Loeffler-Wirth, H. Binder, et al., Nature 2017, 546, 533.

- 10) M. J. Ciancanelli, S. X. L. Huang, P. Luthra, H. Garner, Y. Itan, et al., Science 2015, 348, 448.
- 11) S. Bartfeld, T. Bayram, M. V. D. Wetering, M. Huch, H. Begthel, et al., Gastroenterology 2015, 148, 126.

- 12) K. W. McCracken, E. M. Catá, C. M. Crawford, K. L. Sinagoga, M. Schumacher, et al., Nature 2014, 516, 400.

- 13) Y. Z. Nie, Y. W. Zheng, K. Miyakawa, S. Murata, R. R. Zhang, et al., EBioMedicine 2018, 35, 114.
- 14) M. A. Lancaster, M. Renner, C. A. Martin, D. Wenzel, L. S. Bicknell, et al., Nature 2013, 501, 373.
- 15) A. P. Wong, C. E. Bear, S. Chin, P. Pasceri, T. O. Thompson, et al., Nat. Biotechnol. 2012, 30, 876.
- 16) G. Schwank, B. K. Koo, V. Sasselli, J. F. Dekkers, I. Heo, et al., Cell Stem Cell 2013, 13, 653.
- 17) M. Huch, H. Gehart, R. V. Boxtel, K. Hamer, F. Blokzijl, et al., Cell 2015, 160, 299.

- 18) M. V. D. Wetering, H. E. Francies, J. M. Francis, G. Bounova, F. Iorio, et al., Cell 2015, 161, 933.
- 19) D. Gao, I. Vela, A. Sboner, P. J. Iaquinta, W. R. Karthaus, et al., Cell 2014, 159, 176.

- 20) S. F. Boj, C. I. Hwang, L. A. Baker, I. I. C. Chio, D. D. Engle, et al., Cell 2015, 160, 324.
- 21) L. Broutier, G. Mastrogiovanni, M. M. Verstegen, H. E. Francies, L. M. Gavarró, et al., Nat. Med. 2017, 23, 1424.

- 22) N. Sachs, J. D. Ligt, O. Kopper, E. Gogola, G. Bounova, et al., Cell 2018, 172, 373.

- 23) M. Takasato, P. X. Er, H. S. Chiu, B. Maier, G. J. Baillie, et al., Nature 2015, 526, 564.

- 24) T. Shinozawa, H. Y. Yoshikawa, T. Takebe, Dev. Biol. 2016, 420, 221.

- 25) T. Takebe, B. Zhang, M. Radisic, Cell Stem Cell 2017, 21, 297.

- 26) G. Vlachogiannis, S. Hedayat, A. Vatsiou, Y. Jamin, J. Fernández-Mateos, et al., Science 2018, 359, 920.

- 27) T. Takebe, M. Enomura, E. Yoshizawa, M. Kimura, H. Koike, et al., Cell Stem Cell 2015, 16, 556.
- 28) T. Takebe, K. Sekine, M. Enomura, H. Koike, M. Kimura, et al., Nature 2013, 499, 481.

- 29) S. Yui, T. Nakamura, T. Sato, Y. Nemoto, T. Mizutani, et al., Nat. Med. 2012, 18, 618.

- 30) M. Huch, C. Dorrell, S. F. Boj, J. H. V. Es, V. S. W. Li, et al., Nature 2013, 494, 247.

- 31) F. Weeber, M. V. D. Wetering, M. Hoogstraat, K. K. Dijkstra, O. Krijgsman, et al., PNAS 2015, 112, 13308.

- 32) M. Schütte, T. Risch, N. Abdavi-Azar, K. Boehnke, D. Schumacher, et al., Nat. Commun. 2017, 8.
- 33) T. Sato, D. E. Stange, M. Ferrante, R. G. J. Vries, J. H. V. Es, et al., Gastroenterology 2011, 141, 1762.

- 34) J. R. Spence, C. N. Mayhew, S. A. Rankin, M. F. Kuhar, J. E. Vallance, et al., Nature 2010, 470, 105.
- 35) N. Sachs, A. Papaspyropoulos, D. D. Z. V. Ommen, I. Heo, L. Böttinger, et al., EMBO J. 2019, 38.
- 36) B. R. Dye, D. R. Hill, M. A. Ferguson, Y. H. Tsai, M. S. Nagy, et al., eLife 2015, 4.

- 37) M. A. Lancaster, J. A. Knoblich, Nat. Protoc. 2014, 9, 2329.

- 38) HK. Si-Tayeb, F.K. Noto, M. Nagaoka, J. Li, M. A. Battle, et al., Hepatology 2009, 51, 297.

- 39) M. Takasato, P. X. Er, H. S. Chiu, M. H. Little, Nat. Protoc. 2016, 11, 1681.

- 40) V. Benedetti, V. Brizi, P. Guida, S. Tomasoni, O. Ciampi, E. Angeli, U. Valbusa, A. Benigni, G. Remuzzi, C. Xinaris, EBioMedicine 2018, 33, 253.

- 41) J. Drost, W. R Karthaus, D. Gao, E. Driehuis, C. L Sawyers, Y. Chen, H. Clevers, Nat. Protoc. 2016, 11, 347.
- 42) E. L. Calderon-Gierszal,G. S. Prins, PLOS ONE 2015, 10, e0133238.
